matlab图像处理

1.图片的读取(下左)

I=imread('可爱猫咪.jpg');%图像读取,这里''内为'路径\名称',如:'E:\examples\可爱猫咪.jpg'
figure,imshow(I);%图像显示
title('原图')

 

2.转为灰度图像(上右)

I_gray=rgb2gray(I);
figure,imshow(I_gray);
title('灰度图像')

查看是否是灰度图像的一个方法:

disp('输出字符串')%输出字符串;

ndims()%输出矩阵维度,这里灰度图像或二值图像矩阵维度都为2,彩色图像为3。所以无法判断是灰度图像还是二值图像。之前matlab有函数isgray(),现在被移除了,就用如下办法将就吧。

imwrite(I,'I_gray.jpg')%将I保存为名为I_gray的.jpg图像.

if(ndims(I)==2)
    disp('是灰度图');
    imwrite(I,'I_gray.jpg')
else 
    disp('不是灰度图')
    Ig=rgb2gray(I);%转为灰度图Ig
    imwrite(Ig,'I_gray.jpg')
end

 3.线性扩展

a=0.6;
b=1;
c=0.5;
d=0.8; 
J=imadjust(I,[a;b],[c;d]);
subplot(1,2,1);%画布1行2列,放在第一个
imshow(J);
title('线性扩展');

4.非线性扩展

C=1.5;
K=C*log(1+((double(I))/255));%图像归一化处理
subplot(1,2,2);%画布1行2列,放在第二个
imshow(K);
title('非线性扩展');

 5.二值化

N1=im2bw(I,0.4);
N2=im2bw(I,0.7);
subplot(1,2,1);
imshow(N1);
subplot(1,2,2);
imshow(N2);

6.缩放

a=imresize(I,1.5);%按比例放大到1.5倍
b=imresize(I,[420,384]);%非比例
c=imresize(I,0.7);%按比例缩小到0.7倍
d=imresize(I,[150,80]);
subplot(2,2,1);
imshow(a);
title('a');
subplot(2,2,2);
imshow(b);
title('b');
subplot(2,2,3);
imshow(c);
title('c');
subplot(2,2,4);
imshow(d);
title('d');

 (噢,猫猫~)

 7.旋转

K=imrotate(I,45);
subplot(1,2,1);
imshow(K);
title('旋转45度');
L=imrotate(I,180);
subplot(1,2,2);
imshow(L);
title('旋转180度');

 8.线检测

此处代码为检测水平方向的线,可根据注释模板替换检测垂直等方向的线


I=im2bw(I,0.7);%此处应先将图像二值化或转为灰度图像

w=[-1 -1 -1; 2 2 2; -1 -1 -1];%水平
% w=[-1 -1 2; -1 2 -1; 2 -1 -1];%垂直
% w=[-1 2 -1; -1 2 -1; -1 2 -1];%45度
% w=[2 -1 -1; -1 2 -1; -1 -1 2];%-45度

g=imfilter(double(I), w);
figure,subplot(2,3,1);
imshow(g,{})  % 滤波后图像
title('水平-滤波')

g=abs(g);
subplot(2,3,2);
imshow(g,{})
title('g=abs(g)')

T=max(g(:));
g=g>=T;
subplot(2,3,3);
imshow(g)
title('阈值为T')

T=(1/3)*max(g(:));
g=g>=T;
subplot(2,3,4);
imshow(g)
title('阈值为1/3最大值')

T=(2/3)*max(g(:));
g=g>=T;
subplot(2,3,5);
imshow(g)
title('阈值为2/3最大值')

掩模例:

9.边缘检测

        edge()函数

        如:BW = edge(I,'prewitt',THRESH,DIRECTION) 表示对图像I,用prewitt方法;

        THRESH:规定了普鲁伊特prewitt方法的灵敏度阈值。边缘忽略所有不强于THRESH的边缘。如果你没有指定THRESH,或者THRESH为空, edge 会自动选择这个值。

         DIRECTION:寻找 "水平horizontal "或 "垂直 vertical"边缘,或 "两者"(默认)。

测试三种method,Canny,Prewitt,Sobel

I_gray=rgb2gray(I);%此处应先将图像二值化或转为灰度图像
a=edge(I_gray,'Canny');
b= edge(I_gray,'Prewitt');
c=edge(I_gray,'Sobel');
subplot(1,3,1);
imshow(a);
title('Canny');
subplot(1,3,2);
imshow(b);
title('Prewitt');

subplot(1,3,3);
imshow(c);

title('Sobel');

测试不同方向和不同阈值:


A=edge(I_gray,'Prewitt',0.02,'horizontal');
B=edge(I_gray,'Prewitt',0.15,'horizontal');
C=edge(I_gray,'Prewitt',0.02,'vertical');
D=edge(I_gray,'Prewitt',0.1,'vertical');
subplot(2,2,1);
imshow(A);
subplot(2,2,2);
imshow(B);
subplot(2,2,3);
imshow(C);
subplot(2,2,4);
imshow(D);

10.归一化直方图和累积直方图

I=imread('可爱猫咪.jpg');
set(gcf, 'Position', [20 70 900 600], 'color','y'); 
subplot(1,3,1),imshow(I),title('原图')
N=50;
Hist_image=imhist(img_gray,N); % 计算直方图
Hist_image=Hist_image/sum(Hist_image); % 计算归一化直方图
Hist_image_cumulation=cumsum(Hist_image); % 计算累计直方图
subplot(1,3,2),stem(0:N-1,Hist_image),title('直方图')
subplot(1,4,3),stem(0:N-1,Hist_image_cumulation),title('累计直方图')

这里为二次编辑,将图片裁剪为方形了。

set(gcf, 'Position', [20 70 900 600], 'color','y'); 

设置了figure位置:起始坐标为(20 ,70 ),宽度900,高度600像素。'color','y' 设置了图片背景为黄色 ,默认白色。('r'是红色,'b'是蓝色,'w'白色)

11. 直方图的均衡化

I=imread('可爱猫咪.jpg');
I_gray=rgb2gray(I);
subplot(2,4,1),imshow(I_gray),title('原始图像')
subplot(2,4,5),imhist(I_gray),title('原图像直方图')
N=30;
g=histeq(I_gray,N); % histeq 均衡化函数
subplot(2,4,2),imshow(g),title('直方图均衡后图像(N=30)')
subplot(2,4,6),imhist(g),title('均衡化后直方图(N=30)')
N=256;
g=histeq(I_gray,N); % histeq 均衡化函数
subplot(2,4,3),imshow(g),title('直方图均衡后图像(N=256)')
subplot(2,4,7),imhist(g),title('均衡化后直方图(N=256)')
N=2048;
g=histeq(I_gray,N); % histeq 均衡化函数
subplot(2,4,4),imshow(g),title('直方图均衡后图像(N=2048)')
subplot(2,4,8),imhist(g),title('均衡化后直方图(N=2048)')

12规定化直方图

I=imread('可爱猫咪.jpg');
I_gray=rgb2gray(I);
subplot(3,3,1),imshow(I_gray),title('原始图像')
subplot(3,3,7),imhist(I_gray),title('原图像直方图')
%幂函数变换直方图
Index=0:N-1;
Hist{1}=exp(-(Index-15).^2/8);  % 4
Hist{1}=Hist{1}/sum(Hist{1});
Hist_cumulation{1}=cumsum(Hist{1});
subplot(3,3,5),stem(0:N-1,Hist{1}),title('幂函数变换直方图')
% log函数直方图
Index=0:N-1;
Hist{2}=log(Index+20)/60;  % 15
Hist{2}=Hist{2}/sum(Hist{2});
Hist_cumulation{2}=cumsum(Hist{2});
subplot(3,3,6),stem(0:N-1,Hist{2}),title('log函数变换直方图')
 
% 规定化处理
for m=1:2
    Image=I_gray;
    for k=1:N
        Temp=abs(Hist_image_cumulation(k)-Hist_cumulation{m});
        [Temp1, Project{m}(k)]=min(Temp);
    end
    % 变换后直方图
    for k=1:N
        Temp=find(Project{m}==k); 
        if isempty(Temp)
            Hist_result{m}(k)=0;
        else
            Hist_result{m}(k)=sum(Hist_image(Temp));
        end
    end
    subplot(3,3,m+7),stem(0:N-1,Hist_result{m}),title('变换后直方图')
    % 结果图
    Step=256/N;
    for k=1:N
        Index=find(I_gray>=Step*(k-1)&I_gray<Step*k);
        Image(Index)=Project{m}(k); 
    end
    subplot(3,3,m+1),imshow(Image,[]),title('变换后图像')
end

持续更新......

第一章 MATLAB6.5 基础 1.1 MATLAB 语言介绍 1.1.1 MATLAB 产品系列与应用 1.1.2 MATLAB6.5 的新特点 1.2 MATLAB 语言基础 1.2.1 认识 MATLAB6.5 环境 1.2.2 MATLAB6.5 变量和表达式 1.2.3 数组的产生 1.2.4 数组的操作 1.2.5 常用的数学函数 1.2.6 数组的运算 1.2.7 数组的扩展 1.2.8 数组的转换 1.2.9 MATLAB 控制语句 1.2.10 其它控制语句 1.2.11 文件操作 1.2.12 M 文件 第二章 MATLAB 图形绘制基础 2.1 二维绘图 2.1.1 基本绘图函数 2.1.2 图形窗口的修饰 2.2 三维绘图 2.2.1 plot3 函数 2.2.2 三维网格图和曲面图 第三章 MATLAB 图形对象 3.1 图形对象 3.1.1 Root 对象 3.1.2 Figure 对象 3.1.3 Uicontrol 对象 3.1.4 Uimenu 对象 3.1.5 Axes 对象 3.1.6 Image 对象 3.1.7 Line 对象 3.1.8 Patch 对象 3.1.9 Rectangle 对象 3.1.10 Surface 对象 3.1.11 Light 对象 3.1.12 Text 对象 第四章 MATLAB 图形对象操作 4.1 图形对象的属性 4.2 图形对象句柄的获取 4.2.1 对象创建时获取 4.2.2 层次关系来获取 4.2.3 当前对象的获取 4.2.4 根据对象属性值的获取 4.3 图形对象句柄的删除与判断 4.3.1 句柄的删除 4.3.2 句柄的判断 4.4 图形对象属性值的获取与设置 4.4.1 图形对象属性值的设置 4.4.2 图形对象属性值的获取 4.4.3 用户缺省值的操作 4.5 图形对象的其它操作 4.5.1 figflag 函数 4.5.2 findfigs 函数 4.5.3 copyobj 函数 4.5.4 capture 函数 4.5.5 refresh 函数 4.5.6 saveas 函数 4.5.7 hgload 函数和 hgsave 函数 4.5.8 newplot 函数 第五章 GUI 设计 5.1 认识 GUI 环境 5.1.1 版面设计工具 5.1.2 属性编辑器 5.1.3 菜单编辑器 5.1.4 调整工具 5.1.5 对象浏览器 5.1.6 TAB 次序编辑器 5.1.7 GUIDE 环境设置 5.2 GUI 设计 5.2.1 GUI 设计原则 5.2.2 GUI 设计步骤 5.3 GUI 实现 5.3.1 组件的布局 5.3.2 属性编辑 5.3.3 回调函数 5.4 GUI 实例 5.4.1 组件布局 5.4.2 属性值的修改 5.4.3 回调函数 5.4.4 调试程序 5.4.5 执行的效果 5.4.6 结束语 第六章 MATLAB 特殊图形的绘制 6.1 区域图 6.2 填充图 6.2.1 二维填充图 6.2.2 三维填充图 6.3 条形图 6.3.1 二维条形图 6.3.1 三维条形图 6.4 直方图 6.4.1 笛卡儿坐标系下的直方图 6.4.2 极坐标系下的直方图 6.5 圆体图 6.5.1 圆柱体的绘制 6.5.2 球体的绘制 6.5.3 椭圆体的绘制 6.6 饼图 6.6.1 二维饼图 6.6.2 三维饼图 6.7 排列图 6.8 离散图形的绘制 6.8.1 二维柄状图 6.8.2 三维柄状图 6.8.3 阶梯图 6.9 散点图 6.9.1 二维散点图 6.9.2 三维散点图 6.9.3 散点图矩阵 6.10 轮廓图 6.10.1 二维轮廓图 6.10.2 三维轮廓图 6.11 向量图 6.11.1 罗盘图 6.11.2 羽状图 6.11.3 箭头图 6.11.4 法线图 第七章 MATLAB 高级绘图功能 7.1 彗星图 7.1.1 二维彗星轨迹图 7.1.2 三维彗星轨迹图 7.2 帧动画 7.3 程序动画 7.4 色图变幻 7.5 Voronoi 图和三角剖分 7.6 四面体 7.7 彩带图 7.7.1 彩带图 7.7.2 三维流彩带图 7.8 伪彩图 7.9 切片图 7.9.1 切片图 7.9.2 切片轮廓线图 7.10 网格图和曲面图特效 7.10.1 显示轮廓线 7.10.2 显示围裙 7.10.3 瀑布效果 7.10.4 带光照模式的阴影图 7.11 函数绘图 7.12 三维图形控制 7.12.1 视点 7.12.2 图形旋转 7.12.3 灯光效果 7.12.4 色彩控制 第八章 数字图像原理 8.1 图像 8.2 数字图像处理学 8.2.1 数字图像处理方法 8.2.2 数字图像处理的主要内容 8.3 图像文件格式 8.4 图像类型 8.4.1 索引图像 8.4.2 灰度图像 8.4.3 RGB 图像 8.4.4 二值图像 8.4.5 图像序列 8.4.6 图形类型判断 8.5 图像类型转换 8.5.1 dither 函数 8.5.2 gray2ind 函数 8.5.3 grayslice 函数 8.5.4 im2bw 函数 8.5.5 ind2gray 函数 8.5.6 ind2rgb 函数 8.5.7 mat2gray 函数 8.5.8 rgb2gray 函数 8.5.9 rgb2ind 函数 8.6 MATLAB 中的 8 位和 16 位图像 8.6.1 8 位和 16 位索引图像 8.6.2 8 位和 16 位灰度图像 8.6.3 8 位和 16 位 RGB 图像 8.7 图像文件的操作 8.7.1 查询图像文件的信息 8.7.2 图像文件的读取 8.7.3 图像文件的存储 8.7.4 图像数据类型的转换 8.7.5 图像文件格式的转换 第九章 MATLAB 图像显示与色彩 9.1 图像显示 9.1.1 imshow 函数 9.1.2 显示索引图像 9.1.3 显示灰度图像 9.1.4 显示二值图像 9.1.5 显示真彩图像 9.1.6 直接从磁盘文件中显示图像 9.2 特殊图像显示技术 9.2.1 显示颜色条 9.2.2 显示多帧图像序列 9.2.3 显示多幅图像序列 9.3 纹理映射 9.4 图像颜色 9.4.1 图像的退色处理 9.4.2 MATLAB 的颜色模型 9.4.3 MATLAB 颜色模型的转换 9.4.4 色彩处理 第十章 MATLAB 图像正交变换 10.1 正交变换通用算子 10.2 傅立叶变换 10.2.1 傅立叶变换的原理 10.2.2 傅立叶性质 10.2.3 二维离散傅立叶变换( 2DDFT ) 10.2.4 快速傅立叶变换( FFT ) 10.2.5 傅立叶变换的研究与应用 10.3 离散余弦变换 10.3.1 DCT 变换矩阵 10.3.2 dct2 函数和 dctmtx 函数 10.4 Walsh- Hadamard 变换 10.5 Radon 变换 10.6 小波变换 10.6.1 小波的定义 10.6.2 小波变换函数 10.6.3 小波变换实例 10.6.4 小波除噪与压缩函数 第十一章 滤波器的设计 11.1 线性滤波 11.1.1 卷积与相关 11.1.2 imfilter 滤波函数 11.1.3 预定义滤波 11.2 FIR 滤波器的设计 11.2.1 FIR 滤波器基础 11.2.2 计算二维频率响应 11.2.3 计算期望频率响应矩阵 11.2.4 频率变换法 11.2.5 频率采样法 11.2.6 窗函数法 第十二章 MATLAB 图像运算 12.1 图像点的运算 12.1.1 线性点运算 12.1.2 非线性点运算 12.2 图像的算术运算 12.2.1 加法运算 12.2.2 减 法运算 12.2.3 乘法 运算 12.2.4 除法 运算 12.2.5 其它运算 12.3 图像的位逻辑运算 12.4 图像的几何运算 12.4.1 图像插值 12.4.2 图像缩放 12.4.3 图像旋转 12.4.4 图像剪切 12.5 空间变换 12.5.1 仿射变换( affine transformation ) 12.5.2 透视变换 (Perspective Transformation) 12.5.3 空间变换的 MATLAB 函数 12.5.4 空间变换实例 12.6 图像融合 12.7 邻域与块操作 12.7.1 邻域操作 12.7.2 图像块操作 12.8 区域处理 12.8.1 区域选择 12.8.2 区域滤波 12.8.3 区域填充 第十三章 MATLAB 图像增强 13.1 灰度变换增强 13.1.1 像素值及其统计特性 13.1.2 直方图灰度变换 13.1.3 直方图均衡化 13.1.4 直方图规定化 13.2 空域滤波增强 13.2.1 平滑滤波器 13.2.2 锐化滤波器 13.3 频域增强 13.3.1 低通滤波器 13.3.2 高通滤波器 13.3.3 同态滤波器 13.3.4 频域增强 MATLAB 实例 13.4 色彩增强 13.4.1 真彩色增强 13.4.2 伪彩色增强 13.5 小波增强 第十四章 图像复原 14.1 退化模型 14.1.1 连续退化模型 14.1.2 离散退化模型 14.2 复原的代数方法 14.2.1 代数复原原理 14.2.2 逆滤波复原 14.2.3 最小二乘方滤波 14.3 MATLAB 实现图像复原 14.3.1 维纳滤波复原 14.3.2 规则化滤波复原 14.3.3 Lucy-Richardson 复原 14.3.4 盲去卷积复原 14.3.5 图像复原的其它 MATLAB 函数 第十五章 图像分析 15.1 边缘检测 15.1.1 微分算子 15.1.2 Log算子 15.1.3 Canny 算子 15.2 四叉树分解 15.2.1 四叉树分解 15.2.2 四叉树 MATLAB 函数 第十六章 数学形态学操作 16.1 数学形态学的基本运算 16.1.1 结构元素矩阵 16.1.2 膨胀运算 16.1.3 腐蚀运算 16.1.4 膨胀与腐蚀的对偶关系 16.1.5 开运算和闭运算 16.1.6 击中与击不中 16.1.7 二值图像形态学处理函数 16.1.8 其它膨胀和腐蚀的基本函数 16.2 形态学的基本应用 16.2.1 边缘提取 16.2.2 连通对象标注 16.2.3 对象选择 16.2.4 二值图像面积提取 16.2.5 二值图像的欧拉数 16.2.6 移除对象 16.2.7 区域填充 16.3 查找表操作 16.4 灰度形态学 16.4.1 灰度形态学基本运算实例 16.4.2 其它函数 第十七 章 图像编码与压缩 17.1 图像编码基础 17.1.1 图像编码压缩的必要性 17.1.2 图像编码压缩的可能性 17.1.3 图像编码压缩的分类 17.1.4 图像编码压缩的评价 17.2 无损压缩编码 17.2.1 行程编码 17.2.2 哈夫曼( Huffman )编码 17.2.3 算术编码 17.2.4 词典编码 17.3 有损压缩编码 17.3.1 预测编码 17.3.2 正交变换编码 17.3.3 MATLAB 实现余弦变换压缩 17.3.4 MATLAB 实现小波变换压缩 附录 A 对象属性 附录 B 图像工具箱函数
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值