毕业出去当骡子
码龄4年
关注
提问 私信
  • 博客:5,434
    5,434
    总访问量
  • 13
    原创
  • 166,446
    排名
  • 80
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广西
  • 加入CSDN时间: 2021-05-28
博客简介:

qq_58739479的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    92
    当月
    0
个人成就
  • 获得120次点赞
  • 内容获得5次评论
  • 获得50次收藏
创作历程
  • 13篇
    2024年
成就勋章
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

180人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

李飞飞斯坦福cs231n 2.3线性分类

线性分类器只能识别一个类别的一个模板。某些情况不能很好地划分。
原创
发布博客 2024.05.17 ·
121 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

斯坦福李飞飞cs231n 2.2K-最近邻算法

根据在测试集上效果好设置超参数也是坏的,因为还是不知道在未知的数据上的表现。超参数不能通过训练得到最好的,要根据具体问题分析。区别是坐标系改变对L2没影响。
原创
发布博客 2024.05.17 ·
195 阅读 ·
7 点赞 ·
0 评论 ·
0 收藏

李飞飞cs231n 2.1数据驱动方法

一些的尝试是找到图片中的线条或者拐角,识别一个物体具有的特征。当环境发生一点改变的时候,计算机看到的就会发生巨大改变。语义鸿沟:我们定义的类别和计算机看到的有巨大的差别。缺点是容易出错,每个物体都要有一套规则。对比测试数据和哪个最接近。但它仍然是那个物体。
原创
发布博客 2024.05.17 ·
295 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

李飞飞cs231n计算机视觉1.2计算机视觉历史背景

imagenet,2012显著下降,cnn。自从生物发展出了眼睛,生物数量急剧增长。随着年代的变化,图片的质量一直在变。这些都是停留在简单阶段的尝试。再是2.5维草图,开始拼凑。一人写了本书介绍视觉系统。66年第一篇博士论文。先是草图,边缘,线条。全部放在一起就是3D。
原创
发布博客 2024.05.10 ·
243 阅读 ·
2 点赞 ·
3 评论 ·
0 收藏

领域自适应

把网络分为特征提取器和标签分类器,让源数据和目标数据生成的特征分布一样。找到一个特征提取器,对训练和测试资料经过处理之后忽略不同的部分。L:分类越正确越好,Ld:分辨越正确越好,:让L越小越好,Ld越大越好。训练和测试数据有不同分布。
原创
发布博客 2024.04.26 ·
281 阅读 ·
5 点赞 ·
1 评论 ·
0 收藏

Rich feature hierarchies for accurate object detection and semantic segmentation论文笔记

文献的研究目的是为了提高对象检测和语义分割的准确性,特别是在PASCAL VOC这样的标准数据集上。研究的核心是提出一种名为R-CNN(Regions with CNN features)的新型算法,该算法通过结合区域提议和卷积神经网络(CNN)来实现更精确的对象定位和分类。研究方法包括以下几个关键步骤:1. **区域提议提取**:- 使用自底向上的方法,如Selective Search,从图像中提取可能包含对象的区域提议。这些提议作为后续处理的输入。
原创
发布博客 2024.04.18 ·
1043 阅读 ·
13 点赞 ·
0 评论 ·
28 收藏

Fast R-CNN论文阅读笔记

原始网络中的最后一个最大池化层被替换为一个RoI(区域感兴趣)池化层。这个RoI池化层被配置为设置H和W的值,以确保与网络的第一个全连接层兼容(例如,对于VGG16,H和W都设置为7)。
原创
发布博客 2024.04.18 ·
969 阅读 ·
25 点赞 ·
0 评论 ·
20 收藏

来自人类的恶意攻击

正确率高还不够,需要识别人类的欺骗。加入杂讯,攻击分为有无目标的攻击。根据有无目标设定Loss函数,杂讯还应该尽可能不被人察觉。有两种方式计算怎么样才算不被人察觉。一种是原来的像素平均下来差异小,一种是只看哪个像素差异最大。
原创
发布博客 2024.04.15 ·
414 阅读 ·
12 点赞 ·
1 评论 ·
1 收藏

机器学习的可解释性

得到正确答案不等于智能。法律需要一个理由。
原创
发布博客 2024.03.26 ·
352 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

《计算机视觉中的机器学习:综述》论文笔记

主要有两种类型:模拟图像处理和数字图像处理。关键因素是:1 图像获取2 操控和分析图像3 输出分析后的图像在模拟图像处理中,只能用基础的视觉技术来分析图像。数字图像处理遵循以下三个规则:1 预处理2 增强3 提取信息第一步是把RGB转换成灰度,还有各种预处理、
原创
发布博客 2024.03.26 ·
396 阅读 ·
12 点赞 ·
0 评论 ·
0 收藏

自编码器

自监督学习也叫pre-train,适用于一些不用标注数据的任务,比如做填空题。降维。为什么能成功?图片的变化形式可能只有有限个,用低纬度就能表示。
原创
发布博客 2024.03.25 ·
351 阅读 ·
11 点赞 ·
0 评论 ·
0 收藏

自监督学习

自监督学习:把本身没有标注的数据集分为训练集和标注。随机遮住或替换某个字,训练BERT预测出这个字。
原创
发布博客 2024.03.20 ·
245 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

生成式对抗网络(GAN)

我们的目标是让Generator生成的分布和真实的数据越像越好,但是这个距离很难衡量。训练Discriminator的目标是让它能分辨出哪些是G生成的数据,哪些是真实的数据。而跟JS divergence有关。所以有了以下式子:换个distance计算。
原创
发布博客 2024.03.19 ·
529 阅读 ·
12 点赞 ·
0 评论 ·
1 收藏