python考察
患得患失949
这个作者很懒,什么都没留下…
展开
-
Python_考察——40道基础python问题
40道基础面试python问题原创 2023-06-08 09:17:02 · 1291 阅读 · 0 评论 -
Python_考察——range&xrange有什么区别?
返回的是一个生成器对象,它按需生成每个整数值,不会一次性生成整个序列,因此占用的内存较小。返回的是生成器对象,它在迭代过程中按需生成每个整数值,因此在处理大型序列时,相比于。类似,即返回一个可迭代的序列对象。因此,在 Python 3.x 中,可以直接使用。会一次性生成并返回整个列表对象,占用的内存空间较大。总的来说,Python 3.x 版本中移除了。,用于生成整数序列。返回一个列表对象,而。返回一个生成器对象。函数来生成整数序列。原创 2023-06-08 09:07:27 · 203 阅读 · 0 评论 -
Python_考察——请简单描述python 继承和多重继承
子类在定义时将父类作为参数传递给类名后的括号中,这样子类就继承了父类的所有属性和方法。子类可以直接访问父类的属性和方法,也可以重写(覆盖)父类的方法以实现自己的逻辑。多重继承允许子类同时获得多个父类的特性,并可以在子类中使用这些特性。但需要注意,多重继承可能会引起命名冲突和复杂性增加的问题,需要谨慎使用。继承和多重继承是面向对象编程的重要概念,它们提供了代码重用和扩展的机制,使得代码更加模块化、可维护和可扩展。继承通过创建一个新的类来实现,新的类继承了父类的属性和方法,并且可以在其基础上进行扩展或修改。原创 2023-06-06 12:30:59 · 134 阅读 · 0 评论 -
Python_考察——请简单描述python 生成器
生成器还可以用于表示无限序列,因为它们不需要在内存中保存所有值。需要注意的是,生成器只能遍历一次,一旦遍历结束,就需要重新创建一个新的生成器对象。此外,生成器可以与其他迭代器和序列操作一起使用,例如。它们的语法更简洁,可以在一行代码中创建生成器。总而言之,生成器是一种强大的工具,可以在需要迭代大量数据时提供高效的解决方案,每次调用生成器函数时,它会返回一个生成器对象,可以通过。通过生成器,可以按需生成元素,从而节省内存和提高性能。生成器函数:定义一个函数,并在函数体内使用。循环逐个获取生成器中的值。原创 2023-06-06 11:32:03 · 52 阅读 · 0 评论 -
Python_考察——请简单描述 定义list风险
在Python中,列表是可变对象,当将一个列表赋值给另一个变量时,实际上是将引用传递给了新变量。:如果需要频繁地在列表的任意位置插入或删除元素,列表可能不是最佳的选择。由于列表是动态数组,插入和删除元素时需要移动其他元素,导致操作的时间复杂度为O(n),其中n是列表的长度。:在访问列表元素时,如果使用超出列表索引范围的下标,会导致IndexError异常。总之,定义列表时需要注意潜在的风险,考虑到数据规模、内存消耗、操作效率和边界情况的处理,以选择适当的数据结构来满足需求。频繁的元素插入和删除。原创 2023-06-06 11:29:15 · 89 阅读 · 0 评论 -
Python_考察——请简单描述python 深拷贝与浅拷贝和其区别
对于原始对象中的可变子对象(如列表或字典),浅拷贝只是创建了一个引用,而不是复制其内容。因此,如果修改了原始对象中的可变子对象,浅拷贝的副本也会受到影响。深拷贝(Deep Copy)是创建一个新对象,并递归地复制原始对象及其所有可变子对象的内容。深拷贝将创建原始对象及其所有子对象的独立副本,因此对其中一个对象的修改不会影响另一个对象。当使用浅拷贝时,可变子对象的修改会影响原始对象和浅拷贝对象,而深拷贝则会创建独立的副本,不受影响。这展示了浅拷贝和深拷贝在处理可变子对象时的区别。而使用深拷贝时,修改。原创 2023-06-06 11:27:37 · 78 阅读 · 0 评论 -
Python_考察——简单描述下python的垃圾回收机制
确保不再使用的对象能够被及时清理和回收,从而减少内存泄漏和资源浪费的问题。这种自动的垃圾回收机制减轻了开发人员对内存管理的负担,使得编写Python代码更加方便和高效。会通过追踪对象之间的引用关系,标记出所有可达对象,然后。,并将其占用的资源回收,以便其他对象可以使用。当一个对象变为不可达时,Python会将其。除了引用计数,Python还使用了一种称为。时,说明没有任何变量引用该对象,即。当这个对象被其他变量引用时,其。Python的垃圾回收机制会。来处理循环引用的情况。跟踪和管理对象的引用。原创 2023-06-05 15:17:34 · 59 阅读 · 0 评论 -
Python_考察——python的装饰器怎么理解?举例说明应用场景
这个装饰器示例展示了在函数执行前后插入额外的代码逻辑,这在日志记录、性能计时、权限验证等场景中非常有用。装饰器使得我们能够以一种简洁、可复用的方式扩展函数的功能,而无需修改原始函数的定义。,可以在被装饰的函数或类的执行前后插入额外的代码,以实现功能的增强。下,通过在函数或类的定义前添加装饰器来实现对其功能的扩展或修改。,它接受一个函数或类作为参数,并返回一个新的函数或类。它接受一个函数作为参数,并返回一个新的函数。函数在被装饰的函数执行前后会打印相应的日志信息。装饰器函数,并将返回的。原创 2023-06-05 15:13:51 · 72 阅读 · 0 评论
分享