1.斐波那契数列相关内容

这篇博客探讨了五种不同的斐波那契数列计算方法,从基础的递归实现到使用矩阵快速幂进行优化。递归方法存在大量重复计算,而记忆化搜索和动态规划解决了这个问题。进一步,通过矩阵运算和快速幂算法,将时间复杂度降低到O(logn),使得大数值计算成为可能。这些优化对于算法效率和资源使用有着显著的影响。
摘要由CSDN通过智能技术生成

搬运原出处传送门

算法1
递归。
递归计算的节点个数是 O(2n)O(2n) 的级别的,存在大量重复计算。
时间复杂度是 O(2n)O(2n),一秒内大约能算到第三四十项。

C++ 代码
const int MOD = 1000000007;
int f(int n)
{
    if (n <= 1) return 1;
    return (f(n - 1) + f(n - 2)) % MOD;
}
算法2
记忆化搜索。
开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。
总共有 nn 个状态,计算每个状态的复杂度是 O(1)O(1),所以时间复杂度是 O(n)O(n)。
一秒内算 n=107n=107 毫无压力,但由于是递归计算,递归层数太多会爆栈,大约只能算到 n=105n=105 级别。

C++ 代码
const int N = 100000, MOD = 1000000007;
int a[N];
int f2(int n)
{
    if (a[n]) return a[n];
    if (n <= 1) return 1;
    a[n] = f2(n - 1) + f2(n - 2);
    a[n] %= MOD;
    return a[n];
}
算法3
递推。
开一个大数组,记录每个数的值。用循环递推计算。
总共计算 nn 个状态,所以时间复杂度是 O(n)O(n)。
但需要开一个长度是 nn 的数组,内存将成为瓶颈,当 n=108n=108 时,需要的内存是 4∗1081024×1024≈381MB4∗1081024×1024≈381MB。
分子中乘4是因为C++中 int 类型占4字节。

C++代码
const int N = 100000000, MOD = 1000000007;
int f3(int n)
{
    a[0] = a[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        a[i] = a[i - 1] + a[i - 2];
        a[i] %= MOD;
    }
    return a[n];
}
算法4
递归+滚动变量。
仔细观察我们会发现,递推时我们只需要记录前两项的值即可,没有必要记录所有值,所以我们可以用滚动变量递推。
时间复杂度还是 O(n)O(n),但空间复杂度变成了 O(1)O(1)。

C++代码:
const int MOD = 1000000007;
int f4(int n)
{
    int x, y, z;
    x = y = 1;
    for (int i = 2; i <= n; i ++ )
    {
        z = (x + y) % MOD;
        x = y;
        y = z;
    }
    return z;
}
算法5
矩阵运算 + 快速幂。

快速幂算法的模板可以参考这里。
用算法4我们1秒内最多可以算到 108108 级别,那当 nn 更大时该怎么办呢?
可以先利用矩阵运算的性质将通项公式变成幂次形式,然后用平方倍增(快速幂)的方法求解第 nn 项。

首先我们定义向量
Xn=[anan−1],边界:X1=[a1a0]
Xn=[anan−1],边界:X1=[a1a0]
然后我们可以找出矩阵:
A=[1110]
A=[1110]
则有:
Xn=Xn−1×A
Xn=Xn−1×A
所以:

Xn=X1×An−1
Xn=X1×An−1
由于矩阵具有结合律,所以我们可以先求出 An−1%PAn−1%P,然后再用 X1X1 左乘,即可求出 XnXn,向量 XnXn 的第一个元素就是 anan。

时间复杂度分析:快速幂的时间复杂度是 O(logn)O(logn),所以算法5的时间复杂度也是 O(logn)O(logn)。

C++代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <ctime>

using namespace std;

const int MOD = 1000000007;

void mul(int a[][2], int b[][2], int c[][2])
{
    int temp[][2] = {{0, 0}, {0, 0}};
    for (int i = 0; i < 2; i ++ )
        for (int j = 0; j < 2; j ++ )
            for (int k = 0; k < 2; k ++ )
            {
                long long x = temp[i][j] + (long long)a[i][k] * b[k][j];
                temp[i][j] = x % MOD;
            }
    for (int i = 0; i < 2; i ++ )
        for (int j = 0; j < 2; j ++ )
            c[i][j] = temp[i][j];
}


int f_final(long long n)
{
    int x[2] = {1, 1};

    int res[][2] = {{1, 0}, {0, 1}};
    int t[][2] = {{1, 1}, {1, 0}};
    long long k = n - 1;
    while (k)
    {
        if (k&1) mul(res, t, res);
        mul(t, t, t);
        k >>= 1;
    }

    int c[2] = {0, 0};
    for (int i = 0; i < 2; i ++ )
        for (int j = 0; j < 2; j ++ )
        {
            long long r = c[i] + (long long)x[j] * res[j][i];
            c[i] = r % MOD;
        }

    return c[0];
}


int main()
{
    long long n ;

    cin >> n;
    cout << f_final(n) << endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值