每日一练-10-求矩阵主对角线及副对角线元素的和

题目描述

 求一个n*n的矩阵主对角线及副对角线元素的和!

分析

首先要明确什么为矩阵 

 由此可见,矩阵对应的为二位数组定义为a[n][n];

什么为主对角线?主对角线就是矩阵的左上角到右下角的对角线。即满足i=j;

什么为副对角线?副对角线就是矩阵的左下角到右上角的对角线。即满足i+j+1=n;

 

代码解析

#include <stdio.h>
int main()
{
    int n,i,j,sum=0;
    printf("该矩阵的阶数为:");
    scanf("%d",&n);
    int a[n][n];
    printf("该矩阵的元素为:\n");
    for(i=0;i<n;i++){
        for(j=0;j<n;j++){
            scanf("%d",&a[i][j]);
        }
    }
    for(i=0;i<n;i++){
        for(j=0;j<n;j++){
            if(i==j||j==n-1-i){
                sum+=a[i][j];
            }
        }
    }
    printf("该矩阵的主对角线和副对角线元素的和为:%d",sum);
    return 0;
}

运行结果

 

在C语言中,我们可以使用子函数(也称为函数或过程)来计算矩阵主对角线对角线元素。首先,我们需要定义两个函数,一个用于提取主对角线元素,另一个用于提取对角线元素。 假设我们有一个二维数组`matrix`表示矩阵,其中`rows`是行数,`cols`是列数。以下是简单的步骤: ```c #include <stdio.h> // 函数来获取矩阵主对角线元素 int getDiagonalSum(int matrix[rows][cols], int rows, int cols) { int sum = 0; for (int i = 0; i < rows && i < cols; i++) { sum += matrix[i][i]; } return sum; } // 函数来获取矩阵对角线元素 int getAntidiagonalSum(int matrix[rows][cols], int rows, int cols) { if (rows == cols) { // 只有方阵才有对角线 int sum = 0; for (int i = 0; i < rows; i++) { sum += matrix[i][rows - i - 1]; // 注意索引是从0开始的 } return sum; } else { return 0; // 非方阵则没有对角线,返回0 } } // 主函数 int main() { int matrix[4][4] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16} }; int row = sizeof(matrix) / sizeof(matrix[0]); int col = sizeof(matrix[0]) / sizeof(matrix[0][0]); int main_diagonal_sum = getDiagonalSum(matrix, row, col); int anti_diagonal_sum = getAntidiagonalSum(matrix, row, col); printf("Main diagonal sum: %d\n", main_diagonal_sum); printf("Anti-diagonal sum: %d\n", anti_diagonal_sum); return 0; } ``` 在这个例子中,`getDiagonalSum()`函数遍历主对角线,`getAntidiagonalSum()`函数处理特殊情况——只有当矩阵是方阵(行数等于列数)时才存在对角线。运行此程序会分别打印出主对角线对角线
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值