一.关于numpy数组对象
ndarray.ndim 维度个数,就是数组轴的个数,比如一维二维
ndarray.shape 数组的维度,表示每个维度上数组的大小
ndarray.size 数组的总个数
ndarray.dtybe 数据中元素类型的对象
nadrray.itemsize 数据中每个元素的字节大小
二.创建numpy数组
一维数组
import numpy as np
data=np.array([1,2,3])
data
二维数组
import numpy as np
data2=np.array([[1,2,3],[1,2,3]])
data2
创建元素值全是0的数组
np.Zeros((1,2))
创建元素值全是1的数组
np.ones((1,2))
创建元素值全是随机数的数组
np.empty((5,2))
通过arange()函数创建等差数组 功能与range()类似,但arange()函数返回结果为数组非列表
np.arange(1,20,5)
三.查看数据类型
ndarray.dtype可以创建一个表示数据类型的对象,如果想要获取类型的名称,那么就需要访问

本文详细总结了numpy库的相关知识,包括数组对象的属性如维度、形状、大小和数据类型,以及如何创建不同类型的数组。还介绍了查看和转换数据类型的方法,如通过dtype获取类型名和astype进行转换。进一步讲解了numpy的切片索引,包括一维和多维数组的索引方式,以及花式索引。最后提到了数组的排序功能如sort(),以及all()和unique()函数的应用。
最低0.47元/天 解锁文章
1504

被折叠的 条评论
为什么被折叠?



