基础算法 - 常见算法模板题(最简洁写法)【下】

目录

双指针

最长连续不重复子序列​编辑

二进制中1的个数

区间和

区间合并


双指针

最长连续不重复子序列

 思路:

  1. 设左右指针 j,i;用 i 遍历数组,对【j,i】范围路径数值出现次数记录
  2. 若次数大于1,则将 j 向前走,直到范围中没有重复数字
  3. 对每一步记录,即比较每个范围的长度,取最大值

#include<iostream>
using namespace std;
int a[100010],s[100010];
int main()
{
    int n,j=0,res=0;
    cin>>n;
    for(int i=0;i<n;i++) 
    {
        cin>>a[i];
        s[a[i]]++;
        while(s[a[i]]>1)
        {
            s[a[j]]--;
            j++;
        }
        res=max(res,i-j+1);
    }
    cout<<res<<endl;
    
    return 0;
}

二进制中1的个数

 思路:

位运算(& | ~ ^ >> <<)_NO.-LL的博客-CSDN博客

利用模板

  while(b)  b=b&(b-1);  //二进制中有多少个1就循环多少次

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1e5+10;

int cnt(int b)
{
    int res=0;
    while(b)
    {
        b=b&(b-1);
        res++;
    }
    return res;
}

int main()
{
    int n,b;
    cin>>n;
    for(int i=0;i<n;i++)
    {
        cin>>b;
        cout<<cnt(b)<<" ";
    }
    return 0;
}

 区间和

思路:

1、设vector<pair<int,int> >  add 用于存储下标x 与要加的值c ,query用于记录要求和的区间【l,r】

2、将下标与区间(x,l,r)都存入alls中,准备离散化

3、对alls排序并去重

 alls.erase(unique(alls.begin(), alls.end()), alls.end());

unique作用:把alls重复元素删除,返回新数组的最后一个位置

erase作用:把后面的元素删除,只留下去重元素

 4、设计find函数查找x,并一一映射到数组a中

5、用前缀和就是区间和

6、通过遍历query,完成求区间[l,r]的和。

 为什么不直接用前缀和呢?

  • 因为数据为-1e9到1e9,没办法开这么大的数组,且x下标存在负值无法存储
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

typedef pair<int, int> PII;

const int N = 300010;

int n, m;
int a[N], s[N];

vector<int> alls;
vector<PII> add, query;

int find(int x)     //找到大于等于x的第一个值
{
    int l = 0, r = alls.size() - 1;
    while (l < r)
    {
        int mid = l + r >> 1;
        if (alls[mid] >= x) r = mid;
        else l = mid + 1;
    }
    return r + 1;    //让下标从1开始,方便前缀和计算
}

/*int find(int x)
{
    return lower_bound(alls.begin(),alls.end(),x)-alls.begin() +1;
}*/

int main()
{
    cin >> n >> m;
    for (int i = 0; i < n; i ++ )
    {
        int x, c;
        cin >> x >> c;
        add.push_back({x, c});

        alls.push_back(x);
    }

    for (int i = 0; i < m; i ++ )
    {
        int l, r;
        cin >> l >> r;
        query.push_back({l, r});

        alls.push_back(l);
        alls.push_back(r);
    }

    // 去重
    sort(alls.begin(), alls.end());
    alls.erase(unique(alls.begin(), alls.end()), alls.end());

    // 处理插入
    for (auto item : add)
    {
        int x = find(item.first);
        a[x] += item.second;
    }

    // 预处理前缀和
    for (int i = 1; i <= alls.size(); i ++ ) s[i] = s[i - 1] + a[i];

    // 处理询问
    for (auto item : query)
    {
        int l = find(item.first), r = find(item.second);
        cout << s[r] - s[l - 1] << endl;
    }

    return 0;
}

区间合并

 

思路:

  1. 记录区间左端点st与右端点ed,将区间按左端点排序
  2. 因为左端点有序,只需要判断该区间左端点与前一个区间右端位置,即可确定是否合并
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

typedef pair<int, int> PII;

void merge(vector<PII> &segs)
{
    vector<PII> res;

    sort(segs.begin(), segs.end()); //将左边界排序

    int st = -2e9, ed = -2e9;
    for (auto seg : segs)
        if (ed < seg.first) //不重叠,取新区间
        {
            if (st != -2e9) res.push_back({st, ed});    //不是第一次,插入新区间
            st = seg.first, ed = seg.second;
        }
        else ed = max(ed, seg.second);  //有重叠,取交集

    if (st != -2e9) res.push_back({st, ed});    //循环结束,对最后一个区间插入

    segs = res;
}

int main()
{
    int n;
    scanf("%d", &n);

    vector<PII> segs;
    for (int i = 0; i < n; i ++ )
    {
        int l, r;
        scanf("%d%d", &l, &r);
        segs.push_back({l, r});
    }

    merge(segs);

    cout << segs.size() << endl;

    return 0;
}

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NO.-LL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值