最完整的IDEA算法加解密详解

IDEA流程介绍:

IDEA对64bit进行加密,每次首先分成4个小块,p1 p2 p3 p4一个小块16bit,

下图中的方框是加法mod2^16,圆圈点是乘法mod2^16+1,圆圈加是异或.

p1 是最高16bit位

p4 是最低16bit位

           

8轮循环后,最后经过半轮输出变化的得到结果

          

K1-K6都是密钥,因此一共需要6*8+4 = 52组密钥,密钥是128bit,先取得第一组6个(96bit),然后每次循环左移25位,再取下一组的96bit,再循环左移25bit,最后一次取4个(64bit)

原密钥和逆密钥的关系:

第 i(1-9) 轮的解密的密钥的前 4 个子密钥由加密过程中第 10-i 轮的前 4 个子密钥得出

第 1 个和第 4 个解密子密钥为相应的子密钥关于2^16+1的乘法逆元。

·  第 2 个和第 3 个子密钥的取法为

·      当轮数为 2,...,8 时,取相应的第 3 个和第 2 个的子密钥的2^16的加密逆元。

·      当轮数为 1 或 9 时,取相应的第 2 个和第 3 个子密钥对应的2^16的加密逆元。

·  第 5 和第 6 个密钥是第9-i轮的第5和第6个密钥。

for (int i = 0; i <= 8; i++) {

inv_k[6*i]   = inv_mul(k[6 * (8 - i)]);

if(i==0||i==8){

inv_k[6 * i + 1] = inv_add(k[6 * (8 - i) + 1]);

inv_k[6 * i + 2] = inv_add(k[6 * (8 - i) + 2]);

}else {

inv_k[6 * i + 1] = inv_add(k[6 * (8 - i) + 2]);

inv_k[6 * i + 2] = inv_add(k[6 * (8 - i) + 1]);

}

inv_k[6*i+3] = inv_mul(k[6 * (8 - i)+3]);

if (i == 8) break;

inv_k[6*i + 4] = k[6*(7-i) + 4];

inv_k[6*i + 5] = k[6*(7-i) + 5];

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值