IDEA流程介绍:
IDEA对64bit进行加密,每次首先分成4个小块,p1 p2 p3 p4一个小块16bit,
下图中的方框是加法mod2^16,圆圈点是乘法mod2^16+1,圆圈加是异或.
p1 是最高16bit位
p4 是最低16bit位
8轮循环后,最后经过半轮输出变化的得到结果
K1-K6都是密钥,因此一共需要6*8+4 = 52组密钥,密钥是128bit,先取得第一组6个(96bit),然后每次循环左移25位,再取下一组的96bit,再循环左移25bit,最后一次取4个(64bit)
原密钥和逆密钥的关系:
第 i(1-9) 轮的解密的密钥的前 4 个子密钥由加密过程中第 10-i 轮的前 4 个子密钥得出
第 1 个和第 4 个解密子密钥为相应的子密钥关于2^16+1的乘法逆元。
· 第 2 个和第 3 个子密钥的取法为
· 当轮数为 2,...,8 时,取相应的第 3 个和第 2 个的子密钥的2^16的加密逆元。
· 当轮数为 1 或 9 时,取相应的第 2 个和第 3 个子密钥对应的2^16的加密逆元。
· 第 5 和第 6 个密钥是第9-i轮的第5和第6个密钥。
for (int i = 0; i <= 8; i++) {
inv_k[6*i] = inv_mul(k[6 * (8 - i)]);
if(i==0||i==8){
inv_k[6 * i + 1] = inv_add(k[6 * (8 - i) + 1]);
inv_k[6 * i + 2] = inv_add(k[6 * (8 - i) + 2]);
}else {
inv_k[6 * i + 1] = inv_add(k[6 * (8 - i) + 2]);
inv_k[6 * i + 2] = inv_add(k[6 * (8 - i) + 1]);
}
inv_k[6*i+3] = inv_mul(k[6 * (8 - i)+3]);
if (i == 8) break;
inv_k[6*i + 4] = k[6*(7-i) + 4];
inv_k[6*i + 5] = k[6*(7-i) + 5];
}