动态规划(最长上升子序列)

题目链接

acwing 1017. 怪盗基德的滑翔翼

题目大意

用 N 个建筑排成一条线,高度不尽相同,怪盗基德可以任意选择一个楼作为起点,向左或者向右飞行,但是每一次的落点都必须比上一次的楼层低,求怪盗基德最多可以落多少个建筑物。

题意解析

第一种情况:当怪盗基德只往左飞的时候,如果以任意一栋楼 i 作为起点,那么就可以看成以 i 为端点的最长上升子序列


第二种情况:当怪盗基德只往右飞的时候,如果以任意一栋楼 i 作为起点,那么就可以看成以 i 为端点的最长下降子序列,也就是从右往左的最长上升子序列

因此这个题目的解题思路就是分别从左往右从右往左求一遍最长上升子序列,然后求最大值即可。

那么接下来看一看最长上升子序列,最长上升子序列经典例题:300. 最长递增子序列

最长上升子序列

  • 状态表示:dp[i] 表示从第一个数开始,以 第 i 个数结尾的上升子序列 ,属性为(Max)
  • 状态计算:当 dp[j]<dp[i]的时候 : dp[i]=max(dp[i],dp[j]+1) (j<i),dp[i] 初始值为 1

代码

#include<iostream>
using namespace std;

const int N=110;
int a[N];
int dp[N];

int main()
{
    int t; cin>>t;
    while(t--)
    {
        int n; cin>>n;
        int ans=0;
        
        for(int i=1;i<=n;i++) cin>>a[i];
        
        //最长上升子序列
        for(int i=1;i<=n;i++)
        {
            dp[i]=1;
            for(int j=1;j<i;j++)
            {
                if(a[i]>a[j]) dp[i]=max(dp[i],dp[j]+1);
            }
            ans=max(ans,dp[i]);
        }
        
        //最长下降子序列,就是上升子序列反过来
        for(int i=n;i;i--)
        {
            dp[i]=1;
            for(int j=n;j>i;j--)
            {
                if(a[i]>a[j]) dp[i]=max(dp[i],dp[j]+1);
            }
            ans=max(ans,dp[i]);
        }
        
        cout<<ans<<endl;
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值