1.prim算法
#include <stdio.h>
#include <limits.h>
#define V 5 // 图中顶点的数量
// 从尚未包含在MST中的顶点集合中找到具有最小键值的顶点的函数
int minKey(int key[], int mstSet[]) {
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (mstSet[v] == 0 && key[v] < min)
min = key[v], min_index = v;
return min_index;
}
// 打印存储在parent[]中的构造MST的函数
void printMST(int parent[], int graph[V][V]) {
printf("边 \t权重\n");
for (int i = 1; i < V; i++)
printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]);
}
// 用邻接矩阵表示的图构造并打印MST的函数
void primMST(int graph[V][V]) {
int parent[V]; // 存储构造的MST的数组
int key[V]; // 用于在切割中选择最小权重边的键值
int mstSet[V]; // 表示包含在MST中的顶点集合
// 将所有键值初始化为INFINITE
for (int i = 0; i < V; i++)
key[i] = INT_MAX, mstSet[i] = 0;
// 总是将第一个顶点包含在MST中。
// 使第一个键为0,以便选择此顶点作为第一个顶点。
key[0] = 0; // 将第一个键设为0,以便选择此顶点作为第一个顶点
parent[0] = -1; // 第一个节点始终是MST的根
// MST将具有V个顶点
for (int count = 0; count < V - 1; count++) {
// 从尚未包含在MST中的顶点集合中选择具有最小键值的顶点
int u = minKey(key, mstSet);
// 将选定的顶点添加到MST集合中
mstSet[u] = 1;
// 更新选定顶点的相邻顶点的键值和父索引
// 仅考虑尚未包含在MST中的那些顶点
for (int v = 0; v < V; v++)
// graph[u][v]仅对m的相邻顶点非零
// mstSet[v]对于尚未包含在MST中的顶点为false
// 仅当graph[u][v]小于key[v]时才更新键值
if (graph[u][v] && mstSet[v] == 0 && graph[u][v] < key[v])
parent[v] = u, key[v] = graph[u][v];
}
// 打印构造的MST
printMST(parent, graph);
}
int main() {
// 用邻接矩阵表示的示例图
int graph[V][V] = {{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}};
primMST(graph);
return 0;
}
2.kruskal算法
#include <stdio.h>
#include <stdlib.h>
// 定义边的数据结构
struct Edge {
int src, dest, weight;
};
// 定义图的数据结构
struct Graph {
int V, E;
struct Edge* edge;
};
// 创建图的函数
struct Graph* createGraph(int V, int E) {
struct Graph* graph = (struct Graph*)malloc(sizeof(struct Graph));
graph->V = V;
graph->E = E;
graph->edge = (struct Edge*)malloc(graph->E * sizeof(struct Edge));
return graph;
}
// 用于快速排序的比较函数
int compare(const void* a, const void* b) {
struct Edge* aEdge = (struct Edge*)a;
struct Edge* bEdge = (struct Edge*)b;
return aEdge->weight - bEdge->weight;
}
// 查找集合的根节点
int find(int parent[], int i) {
if (parent[i] == -1)
return i;
return find(parent, parent[i]);
}
// 将两个集合进行合并
void Union(int parent[], int x, int y) {
int xroot = find(parent, x);
int yroot = find(parent, y);
parent[xroot] = yroot;
}
// Kruskal算法的主要函数
void KruskalMST(struct Graph* graph) {
int V = graph->V;
struct Edge result[V]; // 存储最小生成树的结果
int e = 0; // 用于结果数组的索引
int i = 0; // 用于边数组的索引
// 按权重对所有边进行排序
qsort(graph->edge, graph->E, sizeof(graph->edge[0]), compare);
// 创建用于检测循环的子集
int* parent = (int*)malloc(V * sizeof(int));
for (int v = 0; v < V; v++)
parent[v] = -1;
// 在最小生成树中包含V-1条边
while (e < V - 1 && i < graph->E) {
// 从排序后的边数组中取出下一条边
struct Edge next_edge = graph->edge[i++];
// 检查加入该边是否会导致循环
int x = find(parent, next_edge.src);
int y = find(parent, next_edge.dest);
if (x != y) {
// 如果不会导致循环,则加入结果数组中
result[e++] = next_edge;
Union(parent, x, y);
}
}
// 打印最小生成树
printf("Edge \tWeight\n");
for (i = 0; i < e; ++i)
printf("%d - %d \t%d\n", result[i].src, result[i].dest, result[i].weight);
free(parent);
}
int main() {
int V = 4; // 图中顶点的数量
int E = 5; // 图中边的数量
// 创建图
struct Graph* graph = createGraph(V, E);
// 添加边
// 注意:这里假设图是无向的,因此每条边都应该添加两次
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = 10;
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 6;
graph->edge[2].src = 0;
graph->edge[2].dest = 3;
graph->edge[2].weight = 5;
graph->edge[3].src = 1;
graph->edge[3].dest = 3;
graph->edge[3].weight = 15;
graph->edge[4].src = 2;
graph->edge[4].dest = 3;
graph->edge[4].weight = 4;
// 计算最小生成树
KruskalMST(graph);
return 0;
}
本文介绍了Prims算法和Kruskals算法,两种在图论中用于寻找最小生成树(MST)的方法,分别通过邻接矩阵表示图,使用优先队列和并查集数据结构实现。文章详细展示了如何在给定的无向图中找到连接所有顶点的边,使得总权重最小。
1016

被折叠的 条评论
为什么被折叠?



