数据库,从技术开始下的学习

名称
全称
简称
数据库
存储数据的仓库,数据是有组织的进行存储
DataBase DB
数据库管
理系统
操纵和管理数据库的大型软件
DataBase Management
System (DBMS)
SQL
操作关系型数据库的编程语言,定义了一套操作
关系型数据库统一 标准
Structured Query
Language (SQL)
1. MySQL 概述
在这一章节,我们主要介绍两个部分,数据库相关概念及 MySQL 数据库的介绍、下载、安装、启动及连
接。
1.1 数据库相关概念
在这一部分,我们先来讲解三个概念:数据库、数据库管理系统、 SQL
而目前主流的关系型数据库管理系统的市场占有率排名如下:
Oracle :大型的收费数据库, Oracle 公司产品,价格昂贵。
MySQL :开源免费的中小型数据库,后来 Sun 公司收购了 MySQL ,而 Oracle 又收购了 Sun 公司。
目前 Oracle 推出了收费版本的 MySQL ,也提供了免费的社区版本。 SQL Server Microsoft 公司推出的收费的中型数据库, C# .net 等语言常用。
PostgreSQL :开源免费的中小型数据库。
DB2 IBM 公司的大型收费数据库产品。
SQLLite :嵌入式的微型数据库。 Android 内置的数据库采用的就是该数据库。
MariaDB :开源免费的中小型数据库。是 MySQL 数据库的另外一个分支、另外一个衍生产品,与
MySQL 数据库有很好的兼容性。
而不论我们使用的是上面的哪一个关系型数据库,最终在操作时,都是使用 SQL 语言来进行统一操作,
因为我们前面讲到 SQL 语言,是操作关系型数据库的 统一标准 。所以即使我们现在学习的是 MySQL
假如我们以后到了公司,使用的是别的关系型数据库,如: Oracle DB2 SQLServer ,也完全不用
担心,因为操作的方式都是一致的。
1.2 MySQL 数据库
1.2.1 版本
官方: https://www.mysql.com/
MySQL 官方提供了两种不同的版本:
社区版本( MySQL Community Server
免费, MySQL 不提供任何技术支持
商业版本( MySQL Enterprise Edition
收费,可以使用 30 天,官方提供技术支持
本课程采用的是 MySQL 最新的社区版 -MySQL Community Server 8.0.26
1.2.2 下载 下载地址: https://downloads.mysql.com/archives/installer/
也可以使用课程资料中提供的 MySQL 的安装包:
1.2.3 安装
要想使用 MySQL ,我们首先先得将 MySQL 安装好,我们可以根据下面的步骤,一步一步的完成 MySQL
安装。
1). 双击官方下来的安装包文件
2). 根据安装提示进行安装 安装 MySQL 的相关组件,这个过程可能需要耗时几分钟,耐心等待。 输入 MySQL root 用户的密码 , 一定记得记住该密码 3). 配置 安装好 MySQL 之后,还需要配置环境变量,这样才可以在任何目录下连接 MySQL
A. 在此电脑上,右键选择属性
B. 点击左侧的 " 高级系统设置 " ,选择环境变量
C. 找到 Path 系统变量 , 点击 " 编辑 " D. 选择 " 新建 " , MySQL Server 的安装目录下的 bin 目录添加到环境变量 1.2.4 启动停止
MySQL 安装完成之后,在系统启动时,会自动启动 MySQL 服务,我们无需手动启动了。
当然,也可以手动的通过指令启动停止,以管理员身份运行 cmd ,进入命令行执行如下指令:
net start mysql80
net stop mysql80
1
2 注意 : 上述的 mysql80 是我们在安装 MySQL 时,默认指定的 mysql 的系统服务名,不是固
定的,如果未改动,默认就是 mysql80
1.2.5 客户端连接
1). 方式一:使用 MySQL 提供的客户端命令行工具 2). 方式二:使用系统自带的命令行工具执行指令
[] 内为可选参数,如果需要连接远程的 MySQL ,需要加上这两个参数来指定远程主机 IP 、端口,如果
连接本地的 MySQL ,则无需指定这两个参数。
注意: 使用这种方式进行连接时,需要安装完毕后配置 PATH 环境变量。
1.2.6 数据模型
1). 关系型数据库(
RDBMS
概念:建立在关系模型基础上,由多张相互连接的二维表组成的数据库。
而所谓二维表,指的是由行和列组成的表,如下图(就类似于 Excel 表格数据,有表头、有列、有行,
还可以通过一列关联另外一个表格中的某一列数据)。我们之前提到的 MySQL Oracle DB2
SQLServer 这些都是属于关系型数据库,里面都是基于二维表存储数据的。简单说,基于二维表存储
数据的数据库就成为关系型数据库,不是基于二维表存储数据的数据库,就是非关系型数据库。
mysql [-h 127.0.0.1] [-P 3306] -u root -p
参数:
-h : MySQL 服务所在的主机 IP
-P : MySQL 服务端口号, 默认 3306
-u : MySQL 数据库用户名
-p MySQL 数据库用户名对应的密码
1
2
3
4
5
6
7 特点:
A. 使用表存储数据,格式统一,便于维护。
B. 使用 SQL 语言操作,标准统一,使用方便。
2). 数据模型
MySQL 是关系型数据库,是基于二维表进行数据存储的,具体的结构图下 :
我们可以通过 MySQL 客户端连接数据库管理系统 DBMS ,然后通过 DBMS 操作数据库。
可以使用 SQL 语句,通过数据库管理系统操作数据库,以及操作数据库中的表结构及数据。
一个数据库服务器中可以创建多个数据库,一个数据库中也可以包含多张表,而一张表中又可以包
含多行记录。
2. SQL
全称 Structured Query Language ,结构化查询语言。操作关系型数据库的编程语言,定义了
一套操作关系型数据库统一 标准
全称
说明
DDL
Data Definition
Language
数据定义语言,用来定义数据库对象 ( 数据库,表,
字段 )
DML
Data Manipulation
Language
数据操作语言,用来对数据库表中的数据进行增删改
DQL
Data Query Language
数据查询语言,用来查询数据库中表的记录
DCL
Data Control Language
数据控制语言,用来创建数据库用户、控制数据库的
访问权限
2.1 SQL 通用语法
在学习具体的 SQL 语句之前,先来了解一下 SQL 语言的同于语法。
1). SQL 语句可以单行或多行书写,以分号结尾。
2). SQL 语句可以使用空格 / 缩进来增强语句的可读性。
3). MySQL 数据库的 SQL 语句不区分大小写,关键字建议使用大写。
4). 注释:
单行注释: -- 注释内容 # 注释内容
多行注释: /* 注释内容 */
2.2 SQL 分类
SQL 语句,根据其功能,主要分为四类: DDL DML DQL DCL
2.3 DDL
Data Definition Language ,数据定义语言,用来定义数据库对象 ( 数据库,表,字段 )
2.3.1 数据库操作
1). 查询所有数据库
show databases ;
1 2). 查询当前数据库
3). 创建数据库
案例:
A. 创建一个 itcast 数据库 , 使用数据库默认的字符集。
在同一个数据库服务器中,不能创建两个名称相同的数据库,否则将会报错。
可以通过 if not exists 参数来解决这个问题,数据库不存在 , 则创建该数据库,如果存在,则不
创建。
select database() ;
1
create database [ if not exists ] 数据库名 [ default charset 字符集 ] [ collate 排序
规则 ] ;
1
create database itcast;
1
create database if not extists itcast;
1 B. 创建一个 itheima 数据库,并且指定字符集
4). 删除数据库
如果删除一个不存在的数据库,将会报错。此时,可以加上参数 if exists ,如果数据库存在,再
执行删除,否则不执行删除。
5). 切换数据库
我们要操作某一个数据库下的表时,就需要通过该指令,切换到对应的数据库下,否则是不能操作的。
比如,切换到 itcast 数据,执行如下 SQL
create database itheima default charset utf8mb4;
1
drop database [ if exists ] 数据库名 ;
1
use 数据库名 ;
1
use itcast;
1 2.3.2 表操作
2.3.2.1 表操作 - 查询创建
1). 查询当前数据库所有表
比如 , 我们可以切换到 sys 这个系统数据库 , 并查看系统数据库中的所有表结构。
2). 查看指定表结构
通过这条指令,我们可以查看到指定表的字段,字段的类型、是否可以为 NULL ,是否存在默认值等信
息。
3). 查询指定表的建表语句
show tables;
1
use sys;
show tables;
1
2
desc 表名 ;
1 通过这条指令,主要是用来查看建表语句的,而有部分参数我们在创建表的时候,并未指定也会查询
到,因为这部分是数据库的默认值,如:存储引擎、字符集等。
4). 创建表结构
注意 : [...] 内为可选参数,最后一个字段后面没有逗号
比如,我们创建一张表 tb_user ,对应的结构如下,那么建表语句为:
show create table 表名 ;
1
CREATE TABLE 表名 (
字段 1 字段 1 类型 [ COMMENT 字段 1 注释 ],
字段 2 字段 2 类型 [COMMENT 字段 2 注释 ],
字段 3 字段 3 类型 [COMMENT 字段 3 注释 ],
......
字段 n 字段 n 类型 [COMMENT 字段 n 注释 ]
) [ COMMENT 表注释 ] ;
1
2
3
4
5
6
7 2.3.2.2 表操作 - 数据类型
在上述的建表语句中,我们在指定字段的数据类型时,用到了 int varchar ,那么在 MySQL 中除了
以上的数据类型,还有哪些常见的数据类型呢? 接下来 , 我们就来详细介绍一下 MySQL 的数据类型。
MySQL 中的数据类型有很多,主要分为三类:数值类型、字符串类型、日期时间类型。
1). 数值类型
create table tb_user(
id int comment ' 编号 ' ,
name varchar ( 50 ) comment ' 姓名 ' ,
age int comment ' 年龄 ' ,
gender varchar ( 1 ) comment ' 性别 '
) comment ' 用户表 ' ;
1
2
3
4
5
6 类型
大小
有符号 (SIGNED) 范围
无符号 (UNSIGNED) 范围
描述
TINYINT
1byte
(-128 127)
(0 255)
小整
数值
SMALLINT
2bytes
(-32768 32767)
(0 65535)
大整
数值
MEDIUMINT
3bytes
(-8388608 8388607)
(0 16777215)
大整
数值
INT/INTEGER
4bytes
(-2147483648
2147483647)
(0 4294967295)
大整
数值
BIGINT
8bytes
(-2^63 2^63-1)
(0 2^64-1)
极大
整数
FLOAT
4bytes
(-3.402823466 E+38
3.402823466351 E+38)
0 (1.175494351 E-
38 3.402823466 E+38)
单精
度浮
点数
DOUBLE
8bytes
(-1.7976931348623157
E+308
1.7976931348623157
E+308)
0
(2.2250738585072014
E-308
1.7976931348623157
E+308)
双精
度浮
点数
DECIMAL
依赖于 M( 精度 ) D( 标度 )
的值
依赖于 M( 精度 ) D( 标度 )
小数
(
确定
点数 )
:
1). 年龄字段 -- 不会出现负数 , 而且人的年龄不会太大
age tinyint unsigned
2). 分数 -- 总分 100 , 最多出现一位小数
score double(4,1)
1
2
3
4
5
6 类型
大小
描述
CHAR
0-255 bytes
定长字符串 ( 需要指定长度 )
VARCHAR
0-65535 bytes
变长字符串 ( 需要指定长度 )
TINYBLOB
0-255 bytes
不超过 255 个字符的二进制数据
TINYTEXT
0-255 bytes
短文本字符串
BLOB
0-65 535 bytes
二进制形式的长文本数据
TEXT
0-65 535 bytes
长文本数据
MEDIUMBLOB
0-16 777 215 bytes
二进制形式的中等长度文本数据
MEDIUMTEXT
0-16 777 215 bytes
中等长度文本数据
LONGBLOB
0-4 294 967 295 bytes
二进制形式的极大文本数据
LONGTEXT
0-4 294 967 295 bytes
极大文本数据
2). 字符串类型
char varchar 都可以描述字符串, char 是定长字符串,指定长度多长,就占用多少个字符,和
字段值的长度无关 。而 varchar 是变长字符串,指定的长度为最大占用长度 。相对来说, char 的性
能会更高些。
3). 日期时间类型
如:
1). 用户名 username ------> 长度不定 , 最长不会超过 50
username varchar(50)
2). 性别 gender ---------> 存储值 , 不是男 , 就是女
gender char(1)
3). 手机号 phone --------> 固定长度为 11
phone char(11)
1
2
3
4
5
6
7
8
9 类型
范围
格式
描述
DATE
3
1000-01-01 9999-12-31
YYYY-MM-DD
日期值
TIME
3
-838:59:59 838:59:59
HH:MM:SS
时间值或持续
时间
YEAR
1
1901 2155
YYYY
年份值
DATETIME
8
1000-01-01 00:00:00
9999-12-31 23:59:59
YYYY-MM-DD
HH:MM:SS
混合日期和时
间值
TIMESTAMP
4
1970-01-01 00:00:01
2038-01-19 03:14:07
YYYY-MM-DD
HH:MM:SS
混合日期和时
间值,时间戳
2.3.2.3 表操作 - 案例
设计一张员工信息表,要求如下:
1. 编号(纯数字)
2. 员工工号 ( 字符串类型,长度不超过 10 )
3. 员工姓名(字符串类型,长度不超过 10 位)
4. 性别(男 / 女,存储一个汉字)
5. 年龄(正常人年龄,不可能存储负数)
6. 身份证号(二代身份证号均为 18 位,身份证中有 X 这样的字符)
7. 入职时间(取值年月日即可)
对应的建表语句如下 :
:
1). 生日字段 birthday
birthday date
2). 创建时间 createtime
createtime datetime
1
2
3
4
5
6 SQL 语句编写完毕之后,就可以在 MySQL 的命令行中执行 SQL ,然后也可以通过 desc 指令查询表结构
信息:
表结构创建好了,里面的 name 字段是 varchar 类型,最大长度为 10 ,也就意味着如果超过 10 将会报
错,如果我们想修改这个字段的类型 或 修改字段的长度该如何操作呢?接下来再来讲解 DDL 语句中,
如何操作表字段。
2.3.2.4 表操作 - 修改
1). 添加字段
案例 :
emp 表增加一个新的字段 昵称 nickname ,类型为 varchar(20)
2). 修改数据类型
create table emp(
id int comment ' 编号 ' ,
workno varchar ( 10 ) comment ' 工号 ' ,
name varchar ( 10 ) comment ' 姓名 ' ,
gender char ( 1 ) comment ' 性别 ' ,
age tinyint unsigned comment ' 年龄 ' ,
idcard char ( 18 ) comment ' 身份证号 ' ,
entrydate date comment ' 入职时间 '
) comment ' 员工表 ' ;
1
2
3
4
5
6
7
8
9
ALTER TABLE 表名 ADD 字段名 类型 ( 长度 ) [ COMMENT 注释 ] [ 约束 ];
1
ALTER TABLE emp ADD nickname varchar ( 20 ) COMMENT ' 昵称 ' ;
1
ALTER TABLE 表名 MODIFY 字段名 新数据类型 ( 长度 );
1 3). 修改字段名和字段类型
案例 :
emp 表的 nickname 字段修改为 username ,类型为 varchar(30)
4). 删除字段
案例 :
emp 表的字段 username 删除
5). 修改表名
案例 :
emp 表的表名修改为 employee
2.3.2.5 表操作 - 删除
1). 删除表
可选项 IF EXISTS 代表,只有表名存在时才会删除该表,表名不存在,则不执行删除操作 ( 如果不
加该参数项,删除一张不存在的表,执行将会报错 )
案例 :
如果 tb_user 表存在,则删除 tb_user
ALTER TABLE 表名 CHANGE 旧字段名 新字段名 类型 ( 长度 ) [ COMMENT 注释 ] [ 约束 ];
1
ALTER TABLE emp CHANGE nickname username varchar ( 30 ) COMMENT ' 昵称 ' ;
1
ALTER TABLE 表名 DROP 字段名 ;
1
ALTER TABLE emp DROP username;
1
ALTER TABLE 表名 RENAME TO 新表名 ;
1
ALTER TABLE emp RENAME TO employee;
1
DROP TABLE [ IF EXISTS ] 表名 ;
1 2). 删除指定表 , 并重新创建表
注意 : 在删除表的时候,表中的全部数据也都会被删除。
2.4 图形化界面工具
上述,我们已经讲解了通过 DDL 语句,如何操作数据库、操作表、操作表中的字段,而通过 DDL 语句执
行在命令进行操作,主要存在以下两点问题:
1). 会影响开发效率 ;
2). 使用起来,并不直观,并不方便 ;
所以呢,我们在日常的开发中,会借助于 MySQL 的图形化界面,来简化开发,提高开发效率。而目前
mysql 主流的图形化界面工具,有以下几种:
而本次课程中,选择最后一种 DataGrip ,这种图形化界面工具,功能更加强大,界面提示更加友好,
是我们使用 MySQL 的不二之选。接下来,我们来介绍一下 DataGrip 该如何安装、使用。
2.4.1 安装
1). 找到资料中准备好的安装包,双击开始安装
DROP TABLE IF EXISTS tb_user;
1
TRUNCATE TABLE 表名 ;
1 2). 点击 next ,一步一步的完成安装
选择 DataGrip 的安装目录,然后选择下一步
下一步,执行安装 2.4.2 使用
1). 添加数据源
参考图示 , 一步步操作即可
配置以及驱动 jar 包下载完毕之后,就可以点击 "Test Connection" 就可以测试,是否可以连接
MySQL ,如果出现 "Successed" ,就表名连接成功了 。 2). 展示所有数据库
连接上了 MySQL 服务之后,并未展示出所有的数据库,此时,我们需要设置,展示所有的数据库,具体
操作如下:
3). 创建数据库 注意 :
以下两种方式都可以创建数据库:
A. create database db01;
B. create schema db01;
4). 创建表
在指定的数据库上面右键,选择 new --> Table 5). 修改表结构
在需要修改的表上,右键选择 "Modify Table..." 如果想增加字段,直接点击 + 号,录入字段信息,然后点击 Execute 即可。
如果想删除字段,直接点击 - 号,就可以删除字段,然后点击 Execute 即可。
如果想修改字段,双击对应的字段,修改字段信息,然后点击 Execute 即可。
如果要修改表名,或表的注释,直接在输入框修改,然后点击 Execute 即可。 6). DataGrip 中执行 SQL 语句
在指定的数据库上,右键,选择 New --> Query Console
然后就可以在打开的 Query Console 控制台,并在控制台中编写 SQL ,执行 SQL
2.5 DML
DML 英文全称是 Data Manipulation Language( 数据操作语言 ) ,用来对数据库中表的数据记录进
行增、删、改操作。
添加数据( INSERT
修改数据( UPDATE
删除数据( DELETE
2.5.1 添加数据
1). 给指定字段添加数据
INSERT INTO 表名 ( 字段名 1, 字段名 2, ...) VALUES ( 1, 2, ...);
1 案例 : employee 表所有的字段添加数据 ;
插入数据完成之后,我们有两种方式,查询数据库的数据:
A. 方式一
在左侧的表名上双击,就可以查看这张表的数据。
B. 方式二
可以直接一条查询数据的 SQL 语句 , 语句如下 :
案例 : employee 表所有的字段添加数据
执行如下 SQL ,添加的年龄字段值为 -1
执行上述的 SQL 语句时,报错了,具体的错误信息如下:
因为 employee 表的 age 字段类型为 tinyint ,而且还是无符号的 unsigned ,所以取值只能在
0-255 之间。
insert into employee(id,workno,name,gender,age,idcard,entrydate)
values ( 1 , '1' , 'Itcast' , ' ' , 10 , '123456789012345678' , '2000-01-01' );
1
select * from employee;
1
insert into employee(id,workno,name,gender,age,idcard,entrydate)
values ( 1 , '1' , 'Itcast' , ' ' ,- 1 , '123456789012345678' , '2000-01-01' );
1 2). 给全部字段添加数据
案例:插入数据到 employee 表,具体的 SQL 如下:
3). 批量添加数据
案例:批量插入数据到 employee 表,具体的 SQL 如下:
注意事项 :
插入数据时,指定的字段顺序需要与值的顺序是一一对应的。
INSERT INTO 表名 VALUES ( 1, 2, ...);
1
insert into employee values ( 2 , '2' , ' 张无忌 ' , ' ' , 18 , '123456789012345670' , '2005-01-
01' );
1
INSERT INTO 表名 ( 字段名 1, 字段名 2, ...) VALUES ( 1, 2, ...), ( 1, 2, ...), (
1, 2, ...) ;
1
INSERT INTO 表名 VALUES ( 1, 2, ...), ( 1, 2, ...), ( 1, 2, ...) ;
1
insert into employee values ( 3 , '3' , ' 韦一笑 ' , ' ' , 38 , '123456789012345670' , '2005-01-
01' ),( 4 , '4' , ' 赵敏 ' , ' ' , 18 , '123456789012345670' , '2005-01-01' );
1 字符串和日期型数据应该包含在引号中。
插入的数据大小,应该在字段的规定范围内。
2.5.2 修改数据
修改数据的具体语法为 :
案例 :
A. 修改 id 1 的数据,将 name 修改为 itheima
B. 修改 id 1 的数据 , name 修改为小昭 , gender 修改为 女
C. 将所有的员工入职日期修改为 2008-01-01
注意事项 :
修改语句的条件可以有,也可以没有,如果没有条件,则会修改整张表的所有数据。
2.5.3 删除数据
删除数据的具体语法为:
案例 :
A. 删除 gender 为女的员工
UPDATE 表名 SET 字段名 1 = 1 , 字段名 2 = 2 , .... [ WHERE 条件 ] ;
1
update employee set name = 'itheima' where id = 1 ;
1
update employee set name = ' 小昭 ' , gender = ' ' where id = 1 ;
1
update employee set entrydate = '2008-01-01' ;
1
DELETE FROM 表名 [ WHERE 条件 ] ;
1 B. 删除所有员工
注意事项 :
• DELETE 语句的条件可以有,也可以没有,如果没有条件,则会删除整张表的所有数
据。
• DELETE 语句不能删除某一个字段的值 ( 可以使用 UPDATE ,将该字段值置为 NULL
)
当进行删除全部数据操作时, datagrip 会提示我们,询问是否确认删除,我们直接点击
Execute 即可。
2.6 DQL
DQL 英文全称是 Data Query Language( 数据查询语言 ) ,数据查询语言,用来查询数据库中表的记
录。
查询关键字 : SELECT
在一个正常的业务系统中,查询操作的频次是要远高于增删改的,当我们去访问企业官网、电商网站,
在这些网站中我们所看到的数据,实际都是需要从数据库中查询并展示的。而且在查询的过程中,可能
还会涉及到条件、排序、分页等操作。
delete from employee where gender = ' ' ;
1
delete from employee;
1 那么,本小节我们主要学习的就是如何进行数据的查询操作。 我们先来完成如下数据准备工作 :
drop table if exists employee;
create table emp(
id int comment ' 编号 ' ,
workno varchar ( 10 ) comment ' 工号 ' ,
name varchar ( 10 ) comment ' 姓名 ' ,
gender char ( 1 ) comment ' 性别 ' ,
age tinyint unsigned comment ' 年龄 ' ,
idcard char ( 18 ) comment ' 身份证号 ' ,
workaddress varchar ( 50 ) comment ' 工作地址 ' ,
entrydate date comment ' 入职时间 '
)comment ' 员工表 ' ;
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 1 , '00001' , ' 柳岩 666' , ' ' , 20 , '123456789012345678' , ' 北京 ' , '2000-01-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 2 , '00002' , ' 张无忌 ' , ' ' , 18 , '123456789012345670' , ' 北京 ' , '2005-09-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 3 , '00003' , ' 韦一笑 ' , ' ' , 38 , '123456789712345670' , ' 上海 ' , '2005-08-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 4 , '00004' , ' 赵敏 ' , ' ' , 18 , '123456757123845670' , ' 北京 ' , '2009-12-01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 5 , '00005' , ' 小昭 ' , ' ' , 16 , '123456769012345678' , ' 上海 ' , '2007-07-01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 6 , '00006' , ' 杨逍 ' , ' ' , 28 , '12345678931234567X' , ' 北京 ' , '2006-01-01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 7 , '00007' , ' 范瑶 ' , ' ' , 40 , '123456789212345670' , ' 北京 ' , '2005-05-01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 8 , '00008' , ' 黛绮丝 ' , ' ' , 38 , '123456157123645670' , ' 天津 ' , '2015-05-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 9 , '00009' , ' 范凉凉 ' , ' ' , 45 , '123156789012345678' , ' 北京 ' , '2010-04-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 10 , '00010' , ' 陈友谅 ' , ' ' , 53 , '123456789012345670' , ' 上海 ' , '2011-01-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 11 , '00011' , ' 张士诚 ' , ' ' , 55 , '123567897123465670' , ' 江苏 ' , '2015-05-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 12 , '00012' , ' 常遇春 ' , ' ' , 32 , '123446757152345670' , ' 北京 ' , '2004-02-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 13 , '00013' , ' 张三丰 ' , ' ' , 88 , '123656789012345678' , ' 江苏 ' , '2020-11-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 14 , '00014' , ' 灭绝 ' , ' ' , 65 , '123456719012345670' , ' 西安 ' , '2019-05-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 15 , '00015' , ' 胡青牛 ' , ' ' , 70 , '12345674971234567X' , ' 西安 ' , '2018-04-
01' );
INSERT INTO emp (id, workno, name, gender, age, idcard, workaddress, entrydate)
VALUES ( 16 , '00016' , ' 周芷若 ' , ' ' , 18 , null , ' 北京 ' , '2012-06-01' );
准备完毕后,我们就可以看到 emp 表中准备的 16 条数据。接下来,我们再来完成 DQL 语法的学习。
2.6.1 基本语法
DQL 查询语句,语法结构如下:
我们在讲解这部分内容的时候,会将上面的完整语法进行拆分,分为以下几个部分:
基本查询(不带任何条件)
条件查询( WHERE
聚合函数( count max min avg sum
分组查询( group by
排序查询( order by
分页查询( limit
2.6.2 基础查询
在基本查询的 DQL 语句中,不带任何的查询条件,查询的语法如下:
1). 查询多个字段
SELECT
字段列表
FROM
表名列表
WHERE
条件列表
GROUP BY
分组字段列表
HAVING
分组后条件列表
ORDER BY
排序字段列表
LIMIT
分页参数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SELECT 字段 1, 字段 2, 字段 3 ... FROM 表名 ;
1
SELECT * FROM 表名 ;
1 注意 : * 号代表查询所有字段,在实际开发中尽量少用(不直观、影响效率)。
2). 字段设置别名
3). 去除重复记录
案例:
A. 查询指定字段 name, workno, age 并返回
B. 查询返回所有字段
C. 查询所有员工的工作地址 , 起别名
D. 查询公司员工的上班地址有哪些 ( 不要重复 )
2.6.3 条件查询
1). 语法
SELECT 字段 1 [ AS 别名 1 ] , 字段 2 [ AS 别名 2 ] ... FROM 表名 ;
1
SELECT 字段 1 [ 别名 1 ] , 字段 2 [ 别名 2 ] ... FROM 表名 ;
1
SELECT DISTINCT 字段列表 FROM 表名 ;
1
select name,workno,age from emp;
1
select id ,workno,name,gender,age,idcard,workaddress,entrydate from emp;
1
select * from emp;
1
select workaddress as ' 工作地址 ' from emp;
1
-- as 可以省略
select workaddress ' 工作地址 ' from emp;
1
2
select distinct workaddress ' 工作地址 ' from emp;
1 比较运算符
功能
>
大于
>=
大于等于
<
小于
<=
小于等于
=
等于
<> !=
不等于
BETWEEN ... AND ...
在某个范围之内 ( 含最小、最大值 )
IN(...)
in 之后的列表中的值,多选一
LIKE 占位符
模糊匹配 (_ 匹配单个字符 , % 匹配任意个字符 )
IS NULL
NULL
逻辑运算符
功能
AND &&
并且 ( 多个条件同时成立 )
OR ||
或者 ( 多个条件任意一个成立 )
NOT !
, 不是
2). 条件
常用的比较运算符如下 :
常用的逻辑运算符如下 :
案例 :
A. 查询年龄等于 88 的员工
B. 查询年龄小于 20 的员工信息
SELECT 字段列表 FROM 表名 WHERE 条件列表 ;
1
select * from emp where age = 88 ;
1 C. 查询年龄小于等于 20 的员工信息
D. 查询没有身份证号的员工信息
E. 查询有身份证号的员工信息
F. 查询年龄不等于 88 的员工信息
G. 查询年龄在 15 ( 包含 ) 20 ( 包含 ) 之间的员工信息
H. 查询性别为 女 且年龄小于 25 岁的员工信息
I. 查询年龄等于 18 20 40 的员工信息
J. 查询姓名为两个字的员工信息 _ %
K. 查询身份证号最后一位是 X 的员工信息
select * from emp where age < 20 ;
1
select * from emp where age <= 20 ;
1
select * from emp where idcard is null ;
1
select * from emp where idcard is not null ;
1
select * from emp where age != 88 ;
select * from emp where age <> 88 ;
1
2
select * from emp where age >= 15 && age <= 20 ;
select * from emp where age >= 15 and age <= 20 ;
select * from emp where age between 15 and 20 ;
1
2
3
select * from emp where gender = ' ' and age < 25 ;
1
select * from emp where age = 18 or age = 20 or age = 40 ;
select * from emp where age in ( 18 , 20 , 40 );
1
2
select * from emp where name like '__' ;
1
select * from emp where idcard like '%X' ;
select * from emp where idcard like '_________________X' ;
1
2 函数
功能
count
统计数量
max
最大值
min
最小值
avg
平均值
sum
求和
2.6.4 聚合函数
1). 介绍
将一列数据作为一个整体,进行纵向计算 。
2). 常见的聚合函数
3). 语法
注意 : NULL 值是不参与所有聚合函数运算的。
案例:
A. 统计该企业员工数量
对于 count 聚合函数,统计符合条件的总记录数,还可以通过 count( 数字 / 字符串 ) 的形式进行统计
查询,比如:
对于 count(*) count( 字段 ) count(1) 的具体原理,我们在进阶篇中 SQL 优化部分会详
细讲解,此处大家只需要知道如何使用即可。
B. 统计该企业员工的平均年龄
SELECT 聚合函数 ( 字段列表 ) FROM 表名 ;
1
select count (*) from emp; -- 统计的是总记录数
select count (idcard) from emp; -- 统计的是 idcard 字段不为 null 的记录数
1
2
select count ( 1 ) from emp;
1
select avg(age) from emp;
1 C. 统计该企业员工的最大年龄
D. 统计该企业员工的最小年龄
E. 统计西安地区员工的年龄之和
2.6.5 分组查询
1). 语法
2). where having 区别
执行时机不同: where 是分组之前进行过滤,不满足 where 条件,不参与分组;而 having 是分组
之后对结果进行过滤。
判断条件不同: where 不能对聚合函数进行判断,而 having 可以。
注意事项 :
分组之后,查询的字段一般为聚合函数和分组字段,查询其他字段无任何意义。
执行顺序 : where > 聚合函数 > having
支持多字段分组 , 具体语法为 : group by columnA,columnB
案例 :
A. 根据性别分组 , 统计男性员工 和 女性员工的数量
B. 根据性别分组 , 统计男性员工 和 女性员工的平均年龄
select max(age) from emp;
1
select min(age) from emp;
1
select sum(age) from emp where workaddress = ' 西安 ' ;
1
SELECT 字段列表 FROM 表名 [ WHERE 条件 ] GROUP BY 分组字段名 [ HAVING 分组
后过滤条件 ];
1
select gender, count (*) from emp group by gender ;
1
select gender, avg(age) from emp group by gender ;
1 C. 查询年龄小于 45 的员工 , 并根据工作地址分组 , 获取员工数量大于等于 3 的工作地址
D. 统计各个工作地址上班的男性及女性员工的数量
2.6.6 排序查询
排序在日常开发中是非常常见的一个操作,有升序排序,也有降序排序。
1). 语法
2). 排序方式
ASC : 升序 ( 默认值 )
DESC: 降序
注意事项:
如果是升序 , 可以不指定排序方式 ASC ;
如果是多字段排序,当第一个字段值相同时,才会根据第二个字段进行排序 ;
案例 :
A. 根据年龄对公司的员工进行升序排序
B. 根据入职时间 , 对员工进行降序排序
select workaddress, count (*) address_count from emp where age < 45 group by
workaddress having address_count >= 3 ;
1
select workaddress, gender, count (*) ' 数量 ' from emp group by gender , workaddress
;
1
SELECT 字段列表 FROM 表名 ORDER BY 字段 1 排序方式 1 , 字段 2 排序方式 2 ;
1
select * from emp order by age asc ;
select * from emp order by age;
1
2
select * from emp order by entrydate desc ;
1 C. 根据年龄对公司的员工进行升序排序 , 年龄相同 , 再按照入职时间进行降序排序
2.6.7 分页查询
分页操作在业务系统开发时,也是非常常见的一个功能,我们在网站中看到的各种各样的分页条,后台
都需要借助于数据库的分页操作。
1). 语法
注意事项 :
起始索引从 0 开始,起始索引 = (查询页码 - 1 * 每页显示记录数。
分页查询是数据库的方言,不同的数据库有不同的实现, MySQL 中是 LIMIT
如果查询的是第一页数据,起始索引可以省略,直接简写为 limit 10
案例 :
A. 查询第 1 页员工数据 , 每页展示 10 条记录
B. 查询第 2 页员工数据 , 每页展示 10 条记录 --------> ( 页码 -1)* 页展示记录数
2.6.8 案例
1). 查询年龄为 20,21,22,23 岁的员工信息。
select * from emp order by age asc , entrydate desc ;
1
SELECT 字段列表 FROM 表名 LIMIT 起始索引 , 查询记录数 ;
1
select * from emp limit 0 , 10 ;
select * from emp limit 10 ;
1
2
select * from emp limit 10 , 10 ;
1
select * from emp where gender = ' ' and age in ( 20 , 21 , 22 , 23 );
1 2). 查询性别为 男 ,并且年龄在 20-40 ( ) 以内的姓名为三个字的员工。
3). 统计员工表中 , 年龄小于 60 岁的 , 男性员工和女性员工的人数。
4). 查询所有年龄小于等于 35 岁员工的姓名和年龄,并对查询结果按年龄升序排序,如果年龄相同按
入职时间降序排序。
5). 查询性别为男,且年龄在 20-40 ( ) 以内的前 5 个员工信息,对查询的结果按年龄升序排序,
年龄相同按入职时间升序排序。
2.6.9 执行顺序
在讲解 DQL 语句的具体语法之前,我们已经讲解了 DQL 语句的完整语法,及编写顺序,接下来,我们要
来说明的是 DQL 语句在执行时的执行顺序,也就是先执行那一部分,后执行那一部分。
验证:
查询年龄大于 15 的员工姓名、年龄,并根据年龄进行升序排序。
select * from emp where gender = ' ' and ( age between 20 and 40 ) and name like
'___' ;
1
select gender, count (*) from emp where age < 60 group by gender;
1
select name , age from emp where age <= 35 order by age asc , entrydate desc ;
1
select * from emp where gender = ' ' and age between 20 and 40 order by age asc ,
entrydate asc limit 5 ;
1 在查询时,我们给 emp 表起一个别名 e ,然后在 select where 中使用该别名。
执行上述 SQL 语句后,我们看到依然可以正常的查询到结果,此时就说明: from 先执行 , 然后
where select 执行。那 where select 到底哪个先执行呢 ?
此时,此时我们可以给 select 后面的字段起别名,然后在 where 中使用这个别名,然后看看是否可
以执行成功。
执行上述 SQL 报错了 :
由此我们可以得出结论 : from 先执行,然后执行 where , 再执行 select
接下来,我们再执行如下 SQL 语句,查看执行效果:
结果执行成功。 那么也就验证了 : order by 是在 select 语句之后执行的。
综上所述,我们可以看到 DQL 语句的执行顺序为: from ... where ... group by ...
having ... select ... order by ... limit ...
2.7 DCL
DCL 英文全称是 Data Control Language ( 数据控制语言 ) ,用来管理数据库用户、控制数据库的访
问权限。
select name , age from emp where age > 15 order by age asc;
1
select e.name , e.age from emp e where e.age > 15 order by age asc;
1
select e.name ename , e.age eage from emp e where eage > 15 order by age asc;
1
select e.name ename , e.age eage from emp e where e.age > 15 order by eage asc;
1 2.7.1 管理用户
1). 查询用户
查询的结果如下 :
其中 Host 代表当前用户访问的主机 , 如果为 localhost, 仅代表只能够在当前本机访问,是不可以
远程访问的。 User 代表的是访问该数据库的用户名。在 MySQL 中需要通过 Host User 来唯一标识一
个用户。
2). 创建用户
3). 修改用户密码
4). 删除用户
注意事项 :
MySQL 中需要通过用户名 @ 主机名的方式,来唯一标识一个用户。
select * from mysql .user ;
1
CREATE USER ' 用户名 ' @ ' 主机名 ' IDENTIFIED BY ' 密码 ' ;
1
ALTER USER ' 用户名 ' @ ' 主机名 ' IDENTIFIED WITH mysql_native_password BY ' 新密码 ' ;
1
DROP USER ' 用户名 ' @ ' 主机名 ' ;
1 权限
说明
ALL, ALL PRIVILEGES
所有权限
SELECT
查询数据
INSERT
插入数据
UPDATE
修改数据
DELETE
删除数据
ALTER
修改表
DROP
删除数据库 / / 视图
CREATE
创建数据库 /
主机名可以使用 % 通配。
这类 SQL 开发人员操作的比较少,主要是 DBA
Database Administrator 数据库
管理员)使用。
案例:
A. 创建用户 itcast, 只能够在当前主机 localhost 访问 , 密码 123456;
B. 创建用户 heima, 可以在任意主机访问该数据库 , 密码 123456;
C. 修改用户 heima 的访问密码为 1234;
D. 删除 itcast@localhost 用户
2.7.2 权限控制
MySQL 中定义了很多种权限,但是常用的就以下几种:
create user 'itcast' @ 'localhost' identified by '123456' ;
1
create user 'heima' @ '%' identified by '123456' ;
1
alter user 'heima' @ '%' identified with mysql_native_password by '1234' ;
1
drop user 'itcast' @ 'localhost' ;
1 上述只是简单罗列了常见的几种权限描述,其他权限描述及含义,可以直接参考 官方文档
1). 查询权限
2). 授予权限
3). 撤销权限
注意事项:
多个权限之间,使用逗号分隔
授权时, 数据库名和表名可以使用 * 进行通配,代表所有。
案例 :
A. 查询 'heima'@'%' 用户的权限
B. 授予 'heima'@'%' 用户 itcast 数据库所有表的所有操作权限
C. 撤销 'heima'@'%' 用户的 itcast 数据库的所有权限
3. 函数
SHOW GRANTS FOR ' 用户名 ' @ ' 主机名 ' ;
1
GRANT 权限列表 ON 数据库名 . 表名 TO ' 用户名 ' @ ' 主机名 ' ;
1
REVOKE 权限列表 ON 数据库名 . 表名 FROM ' 用户名 ' @ ' 主机名 ' ;
1
show grants for 'heima' @ '%' ;
1
grant all on itcast.* to 'heima' @ '%' ;
1
revoke all on itcast.* from 'heima' @ '%' ;
1 函数 是指一段可以直接被另一段程序调用的程序或代码。 也就意味着,这一段程序或代码在 MySQL
已经给我们提供了,我们要做的就是在合适的业务场景调用对应的函数完成对应的业务需求即可。 那
么,函数到底在哪儿使用呢?
我们先来看两个场景:
1). 在企业的 OA 或其他的人力系统中,经常会提供的有这样一个功能,每一个员工登录上来之后都能
够看到当前员工入职的天数。 而在数据库中,存储的都是入职日期,如 2000-11-12 ,那如果快速计
算出天数呢?
2). 在做报表这类的业务需求中 , 我们要展示出学员的分数等级分布。而在数据库中,存储的是学生的
分数值,如 98/75 ,如何快速判定分数的等级呢?
其实,上述的这一类的需求呢,我们通过 MySQL 中的函数都可以很方便的实现 。
MySQL 中的函数主要分为以下四类: 字符串函数、数值函数、日期函数、流程函数。
3.1 字符串函数
MySQL 中内置了很多字符串函数,常用的几个如下: 函数
功能
CONCAT(S1,S2,...Sn)
字符串拼接,将 S1 S2 ... Sn 拼接成一个字符串
LOWER(str)
将字符串 str 全部转为小写
UPPER(str)
将字符串 str 全部转为大写
LPAD(str,n,pad)
左填充,用字符串 pad str 的左边进行填充,达到 n 个字符
串长度
RPAD(str,n,pad)
右填充,用字符串 pad str 的右边进行填充,达到 n 个字符
串长度
TRIM(str)
去掉字符串头部和尾部的空格
SUBSTRING(str,start,len)
返回从字符串 str start 位置起的 len 个长度的字符串
演示如下:
A. concat : 字符串拼接
B. lower : 全部转小写
C. upper : 全部转大写
D. lpad : 左填充
E. rpad : 右填充
F. trim : 去除空格
G. substring : 截取子字符串
select concat( 'Hello' , ' MySQL' );
1
select lower( 'Hello' );
1
select upper( 'Hello' );
1
select lpad( '01' , 5 , '-' );
1
select rpad( '01' , 5 , '-' );
1
select trim( ' Hello MySQL ' );
1 案例 :
由于业务需求变更,企业员工的工号,统一为 5 位数,目前不足 5 位数的全部在前面补 0 。比如: 1 号员
工的工号应该为 00001
处理完毕后 , 具体的数据为 :
3.2 数值函数
常见的数值函数如下:
select substring( 'Hello MySQL' , 1 , 5 );
1
update emp set workno = lpad(workno, 5 , '0' );
1 函数
功能
CEIL(x)
向上取整
FLOOR(x)
向下取整
MOD(x,y)
返回 x/y 的模
RAND()
返回 0~1 内的随机数
ROUND(x,y)
求参数 x 的四舍五入的值,保留 y 位小数
演示如下:
A. ceil :向上取整
B. floor :向下取整
C. mod :取模
D. rand :获取随机数
E. round :四舍五入
案例:
通过数据库的函数,生成一个六位数的随机验证码。
思路: 获取随机数可以通过 rand() 函数,但是获取出来的随机数是在 0-1 之间的,所以可以在其基础
上乘以 1000000 ,然后舍弃小数部分,如果长度不足 6 位,补 0
select ceil( 1.1 );
1
select floor( 1.9 );
1
select mod( 7 , 4 );
1
select rand();
1
select round( 2.344 , 2 );
1
select lpad(round(rand()* 1000000 , 0 ), 6 , '0' );
1 函数
功能
CURDATE()
返回当前日期
CURTIME()
返回当前时间
NOW()
返回当前日期和时间
YEAR(date)
获取指定 date 的年份
MONTH(date)
获取指定 date 的月份
DAY(date)
获取指定 date 的日期
DATE_ADD(date, INTERVAL expr
type)
返回一个日期 / 时间值加上一个时间间隔 expr 后的
时间值
DATEDIFF(date1,date2)
返回起始时间 date1 和 结束时间 date2 之间的天
3.3 日期函数
常见的日期函数如下:
演示如下:
A. curdate :当前日期
B. curtime :当前时间
C. now :当前日期和时间
D. YEAR , MONTH , DAY :当前年、月、日
E. date_add :增加指定的时间间隔
select curdate();
1
select curtime();
1
select now();
1
select YEAR (now());
select MONTH(now());
select DAY(now());
1
2
3 函数
功能
IF(value , t , f)
如果 value true ,则返回 t ,否则返回
f
IFNULL(value1 , value2)
如果 value1 不为空,返回 value1 ,否则
返回 value2
CASE WHEN [ val1 ] THEN [res1] ...
ELSE [ default ] END
如果 val1 true ,返回 res1 ...
则返回 default 默认值
CASE [ expr ] WHEN [ val1 ] THEN
[res1] ... ELSE [ default ] END
如果 expr 的值等于 val1 ,返回
res1 ... 否则返回 default 默认值
F. datediff :获取两个日期相差的天数
案例:
查询所有员工的入职天数,并根据入职天数倒序排序。
思路: 入职天数,就是通过当前日期 - 入职日期,所以需要使用 datediff 函数来完成。
3.4 流程函数
流程函数也是很常用的一类函数,可以在 SQL 语句中实现条件筛选,从而提高语句的效率。
演示如下:
A. if
select date_add(now(), INTERVAL 70 YEAR );
1
select datediff( '2021-10-01' , '2021-12-01' );
1
select name, datediff(curdate(), entrydate) as 'entrydays' from emp order by
entrydays desc ;
1
select if( false , 'Ok' , 'Error' );
1 B. ifnull
C. case when then else end
需求 : 查询 emp 表的员工姓名和工作地址 ( 北京 / 上海 ----> 一线城市 , 其他 ----> 二线城市 )
案例 :
具体的 SQL 语句如下 :
select ifnull( 'Ok' , 'Default' );
select ifnull( '' , 'Default' );
select ifnull( null , 'Default' );
1
2
3
4
5
select
name,
( case workaddress when ' 北京 ' then ' 一线城市 ' when ' 上海 ' then ' 一线城市 ' else
' 二线城市 ' end ) as ' 工作地址 '
from emp;
1
2
3
4
create table score(
id int comment 'ID' ,
name varchar ( 20 ) comment ' 姓名 ' ,
math int comment ' 数学 ' ,
english int comment ' 英语 ' ,
chinese int comment ' 语文 '
) comment ' 学员成绩表 ' ;
insert into score(id, name, math, english, chinese) VALUES ( 1 , 'Tom' , 67 , 88 , 95
), ( 2 , 'Rose' , 23 , 66 , 90 ),( 3 , 'Jack' , 56 , 98 , 76 );
1
2
3
4
5
6
7
8 MySQL 的常见函数我们学习完了,那接下来,我们就来分析一下,在前面讲到的两个函数的案例场景,
思考一下需要用到什么样的函数来实现 ?
1). 数据库中,存储的是入职日期,如 2000-01-01 ,如何快速计算出入职天数呢? -------->
答案 : datediff
2). 数据库中,存储的是学生的分数值,如 98 75 ,如何快速判定分数的等级呢? ---------->
答案 : case ... when ...
4. 约束
4.1 概述
概念:约束是作用于表中字段上的规则,用于限制存储在表中的数据。
目的:保证数据库中数据的正确、有效性和完整性。
分类 :
select
id,
name,
(case when math >= 85 then ' 优秀 ' when math >= 60 then ' 及格 ' else ' 不及格 ' end )
' 数学 ' ,
(case when english >= 85 then ' 优秀 ' when english >= 60 then ' 及格 ' else ' 不及格 '
end ) ' 英语 ' ,
(case when chinese >= 85 then ' 优秀 ' when chinese >= 60 then ' 及格 ' else ' 不及格 '
end ) ' 语文 '
from score;
1
2
3
4
5
6
7 约束
描述
关键字
非空约束
限制该字段的数据不能为 null
NOT NULL
唯一约束
保证该字段的所有数据都是唯一、不重复的
UNIQUE
主键约束
主键是一行数据的唯一标识,要求非空且唯一
PRIMARY
KEY
默认约束
保存数据时,如果未指定该字段的值,则采用默认值
DEFAULT
检查约束 (8.0.16 版本
之后 )
保证字段值满足某一个条件
CHECK
外键约束
用来让两张表的数据之间建立连接,保证数据的一致
性和完整性
FOREIGN
KEY
字段名
字段含
字段类型
约束条件
约束关键字
id
ID 唯一
标识
int
主键,并且自动增长
PRIMARY KEY,
AUTO_INCREMENT
name
姓名
varchar(10)
不为空,并且唯一
NOT NULL , UNIQUE
age
年龄
int
大于 0 ,并且小于等
120
CHECK
status
状态
char(1)
如果没有指定该值,
默认为 1
DEFAULT
gender
性别
char(1)
注意:约束是作用于表中字段上的,可以在创建表 / 修改表的时候添加约束。
4.2 约束演示
上面我们介绍了数据库中常见的约束,以及约束涉及到的关键字,那这些约束我们到底如何在创建表、
修改表的时候来指定呢,接下来我们就通过一个案例,来演示一下。
案例需求: 根据需求,完成表结构的创建。需求如下:
对应的建表语句为: 在为字段添加约束时,我们只需要在字段之后加上约束的关键字即可,需要关注其语法。我们执行上面
SQL 把表结构创建完成,然后接下来,就可以通过一组数据进行测试,从而验证一下,约束是否可以
生效。
上面,我们是通过编写 SQL 语句的形式来完成约束的指定,那加入我们是通过图形化界面来创建表结构
时,又该如何来指定约束呢? 只需要在创建表的时候,根据我们的需要选择对应的约束即可。
CREATE TABLE tb_user(
id int AUTO_INCREMENT PRIMARY KEY COMMENT 'ID 唯一标识 ' ,
name varchar ( 10 ) NOT NULL UNIQUE COMMENT ' 姓名 ' ,
age int check (age > 0 && age <= 120 ) COMMENT ' 年龄 ' ,
status char ( 1 ) default '1' COMMENT ' 状态 ' ,
gender char ( 1 ) COMMENT ' 性别 '
);
1
2
3
4
5
6
7
insert into tb_user(name,age,status,gender) values ( 'Tom1' , 19 , '1' , ' ' ),
( 'Tom2' , 25 , '0' , ' ' );
insert into tb_user(name,age,status,gender) values ( 'Tom3' , 19 , '1' , ' ' );
insert into tb_user(name,age,status,gender) values ( null , 19 , '1' , ' ' );
insert into tb_user(name,age,status,gender) values ( 'Tom3' , 19 , '1' , ' ' );
insert into tb_user(name,age,status,gender) values ( 'Tom4' , 80 , '1' , ' ' );
insert into tb_user(name,age,status,gender) values ( 'Tom5' ,- 1 , '1' , ' ' );
insert into tb_user(name,age,status,gender) values ( 'Tom5' , 121 , '1' , ' ' );
insert into tb_user(name,age,gender) values ( 'Tom5' , 120 , ' ' );
1
2
3
4
5
6
7
8
9
10
11 4.3 外键约束
4.3.1 介绍
外键:用来让两张表的数据之间建立连接,从而保证数据的一致性和完整性。
我们来看一个例子:
左侧的 emp 表是员工表,里面存储员工的基本信息,包含员工的 ID 、姓名、年龄、职位、薪资、入职日
期、上级主管 ID 、部门 ID ,在员工的信息中存储的是部门的 ID dept_id ,而这个部门的 ID 是关联的
部门表 dept 的主键 id ,那 emp 表的 dept_id 就是外键 , 关联的是另一张表的主键。
注意:目前上述两张表,只是在逻辑上存在这样一层关系;在数据库层面,并未建立外键关联,
所以是无法保证数据的一致性和完整性的。
没有数据库外键关联的情况下,能够保证一致性和完整性呢,我们来测试一下。 准备数据
接下来,我们可以做一个测试,删除 id 1 的部门信息。
create table dept(
id int auto_increment comment 'ID' primary key,
name varchar ( 50 ) not null comment ' 部门名称 '
)comment ' 部门表 ' ;
INSERT INTO dept (id, name) VALUES ( 1 , ' 研发部 ' ), ( 2 , ' 市场部 ' ),( 3 , ' 财务部 ' ), ( 4 ,
' 销售部 ' ), ( 5 , ' 总经办 ' );
create table emp(
id int auto_increment comment 'ID' primary key,
name varchar ( 50 ) not null comment ' 姓名 ' ,
age int comment ' 年龄 ' ,
job varchar ( 20 ) comment ' 职位 ' ,
salary int comment ' 薪资 ' ,
entrydate date comment ' 入职时间 ' ,
managerid int comment ' 直属领导 ID' ,
dept_id int comment ' 部门 ID'
)comment ' 员工表 ' ;
INSERT INTO emp (id, name, age, job,salary, entrydate, managerid, dept_id)
VALUES
( 1 , ' 金庸 ' , 66 , ' 总裁 ' , 20000 , '2000-01-01' , null , 5 ),( 2 , ' 张无忌 ' , 20 ,
' 项目经理 ' , 12500 , '2005-12-05' , 1 , 1 ),
( 3 , ' 杨逍 ' , 33 , ' 开发 ' , 8400 , '2000-11-03' , 2 , 1 ),( 4 , ' 韦一笑 ' , 48 , '
' , 11000 , '2002-02-05' , 2 , 1 ),
( 5 , ' 常遇春 ' , 43 , ' 开发 ' , 10500 , '2004-09-07' , 3 , 1 ),( 6 , ' 小昭 ' , 19 , '
序员鼓励师 ' , 6600 , '2004-10-12' , 2 , 1 );
结果,我们看到删除成功,而删除成功之后,部门表不存在id 1 的部门,而在 emp 表中还有很多的员
工,关联的为 id 1 的部门,此时就出现了数据的不完整性。 而要想解决这个问题就得通过数据库的
外键约束。
4.3.2 语法
1). 添加外键
案例 :
emp 表的 dept_id 字段添加外键约束 , 关联 dept 表的主键 id
添加了外键约束之后,我们再到 dept ( 父表 ) 删除 id 1 的记录,然后看一下会发生什么现象。 此时
将会报错,不能删除或更新父表记录,因为存在外键约束。
CREATE TABLE 表名 (
字段名 数据类型 ,
...
[CONSTRAINT] [ 外键名称 ] FOREIGN KEY ( 外键字段名 ) REFERENCES 主表 ( 主表列名 )
);
ALTER TABLE 表名 ADD CONSTRAINT 外键名称 FOREIGN KEY ( 外键字段名 )
REFERENCES 主表 ( 主表列名 ) ;
alter table emp add constraint fk_emp_dept_id foreign key (dept_id) references
dept(id);
行为 说明
NO
ACTION
当在父表中删除 / 更新对应记录时,首先检查该记录是否有对应外键,如果有则不
允许删除 / 更新。 ( RESTRICT 一致 ) 默认行为
RESTRICT
当在父表中删除 / 更新对应记录时,首先检查该记录是否有对应外键,如果有则不
允许删除 / 更新。 ( NO ACTION 一致 ) 默认行为
CASCADE
当在父表中删除 / 更新对应记录时,首先检查该记录是否有对应外键,如果有,则
也删除 / 更新外键在子表中的记录。
SET NULL
当在父表中删除对应记录时,首先检查该记录是否有对应外键,如果有则设置子表
中该外键值为 null (这就要求该外键允许取 null )。
SET
DEFAULT
父表有变更时,子表将外键列设置成一个默认的值 (Innodb 不支持 )
2). 删除外键
案例:
删除 emp 表的外键 fk_emp_dept_id
4.3.3 删除 / 更新行为
添加了外键之后,再删除父表数据时产生的约束行为,我们就称为删除 / 更新行为。具体的删除 / 更新行
为有以下几种 :
具体语法为 :
演示如下:
ALTER TABLE 表名 DROP FOREIGN KEY 外键名称 ;
1
alter table emp drop foreign key fk_emp_dept_id;
1
ALTER TABLE 表名 ADD CONSTRAINT 外键名称 FOREIGN KEY ( 外键字段 ) REFERENCES
主表名 ( 主表字段名 ) ON UPDATE CASCADE ON DELETE CASCADE;
1 由于 NO ACTION 是默认行为,我们前面语法演示的时候,已经测试过了,就不再演示了,这里我们再
演示其他的两种行为: CASCADE SET NULL
1). CASCADE
A. 修改父表 id 1 的记录,将 id 修改为 6
我们发现,原来在子表中 dept_id 值为 1 的记录,现在也变为 6 了,这就是 cascade 级联的效果。
在一般的业务系统中,不会修改一张表的主键值。
B. 删除父表 id 6 的记录
我们发现,父表的数据删除成功了,但是子表中关联的记录也被级联删除了。
2). SET NULL
在进行测试之前,我们先需要删除上面建立的外键 fk_emp_dept_id 。然后再通过数据脚本,将
emp dept 表的数据恢复了。
接下来,我们删除 id 1 的数据,看看会发生什么样的现象。
alter table emp add constraint fk_emp_dept_id foreign key (dept_id) references
dept(id) on update cascade on delete cascade ;
1
alter table emp add constraint fk_emp_dept_id foreign key (dept_id) references
dept(id) on update set null on delete set null ;
1 我们发现父表的记录是可以正常的删除的,父表的数据删除之后,再打开子表 emp ,我们发现子表 emp
dept_id 字段,原来 dept_id 1 的数据,现在都被置为 NULL 了。
这就是 SET NULL 这种删除 / 更新行为的效果。
5. 多表查询
我们之前在讲解 SQL 语句的时候,讲解了 DQL 语句,也就是数据查询语句,但是之前讲解的查询都是单
表查询,而本章节我们要学习的则是多表查询操作,主要从以下几个方面进行讲解。
5.1 多表关系
项目开发中,在进行数据库表结构设计时,会根据业务需求及业务模块之间的关系,分析并设计表结
构,由于业务之间相互关联,所以各个表结构之间也存在着各种联系,基本上分为三种:
一对多 ( 多对一 )
多对多
一对一
5.1.1 一对多
案例 : 部门 与 员工的关系
关系 : 一个部门对应多个员工,一个员工对应一个部门
实现 : 在多的一方建立外键,指向一的一方的主键 5.1.2 多对多
案例 : 学生 与 课程的关系
关系 : 一个学生可以选修多门课程,一门课程也可以供多个学生选择
实现 : 建立第三张中间表,中间表至少包含两个外键,分别关联两方主键
对应的 SQL 脚本 :
create table student(
id int auto_increment primary key comment ' 主键 ID' ,
name varchar ( 10 ) comment ' 姓名 ' ,
no varchar ( 10 ) comment ' 学号 '
) comment ' 学生表 ' ;
insert into student values ( null , ' 黛绮丝 ' , '2000100101' ),( null , ' 谢逊 ' ,
'2000100102' ),( null , ' 殷天正 ' , '2000100103' ),( null , ' 韦一笑 ' , '2000100104' );
create table course(
id int auto_increment primary key comment ' 主键 ID' ,
name varchar ( 10 ) comment ' 课程名称 '
) comment ' 课程表 ' ;
insert into course values ( null , 'Java' ), ( null , 'PHP' ), ( null , 'MySQL' ) ,
( null , 'Hadoop' );
create table student_course(
5.1.3 一对一
案例 : 用户 与 用户详情的关系
关系 : 一对一关系,多用于单表拆分,将一张表的基础字段放在一张表中,其他详情字段放在另
一张表中,以提升操作效率
实现 : 在任意一方加入外键,关联另外一方的主键,并且设置外键为唯一的 (UNIQUE)
对应的 SQL 脚本 :
id int auto_increment comment ' 主键 ' primary key,
studentid int not null comment ' 学生 ID' ,
courseid int not null comment ' 课程 ID' ,
constraint fk_courseid foreign key (courseid) references course (id),
constraint fk_studentid foreign key (studentid) references student (id)
)comment ' 学生课程中间表 ' ;
insert into student_course values ( null , 1 , 1 ),( null , 1 , 2 ),( null , 1 , 3 ),( null , 2 , 2 ),
( null , 2 , 3 ),( null , 3 , 4 );
create table tb_user(
id int auto_increment primary key comment ' 主键 ID' ,
name varchar ( 10 ) comment ' 姓名 ' ,
age int comment ' 年龄 ' ,
gender char ( 1 ) comment '1: , 2: ' ,
phone char ( 11 ) comment ' 手机号 '
) comment ' 用户基本信息表 ' ;
create table tb_user_edu(
id int auto_increment primary key comment ' 主键 ID' ,
degree varchar ( 20 ) comment ' 学历 ' ,
major varchar ( 50 ) comment ' 专业 ' ,
primaryschool varchar ( 50 ) comment ' 小学 ' ,
middleschool varchar ( 50 ) comment ' 中学 ' ,
5.2 多表查询概述
5.2.1 数据准备
1). 删除之前 emp, dept 表的测试数据
2). 执行如下脚本,创建 emp 表与 dept 表并插入测试数据
university varchar ( 50 ) comment ' 大学 ' ,
userid int unique comment ' 用户 ID' ,
constraint fk_userid foreign key (userid) references tb_user(id)
) comment ' 用户教育信息表 ' ;
insert into tb_user(id, name, age, gender, phone) values
( null , ' 黄渤 ' , 45 , '1' , '18800001111' ),
( null , ' 冰冰 ' , 35 , '2' , '18800002222' ),
( null , ' 码云 ' , 55 , '1' , '18800008888' ),
( null , ' 李彦宏 ' , 50 , '1' , '18800009999' );
insert into tb_user_edu(id, degree, major, primaryschool, middleschool,
university, userid) values
( null , ' 本科 ' , ' 舞蹈 ' , ' 静安区第一小学 ' , ' 静安区第一中学 ' , ' 北京舞蹈学院 ' , 1 ),
( null , ' 硕士 ' , ' 表演 ' , ' 朝阳区第一小学 ' , ' 朝阳区第一中学 ' , ' 北京电影学院 ' , 2 ),
( null , ' 本科 ' , ' 英语 ' , ' 杭州市第一小学 ' , ' 杭州市第一中学 ' , ' 杭州师范大学 ' , 3 ),
( null , ' 本科 ' , ' 应用数学 ' , ' 阳泉第一小学 ' , ' 阳泉区第一中学 ' , ' 清华大学 ' , 4 );
-- 创建 dept 表,并插入数据
create table dept(
id int auto_increment comment 'ID' primary key,
name varchar ( 50 ) not null comment ' 部门名称 '
)comment ' 部门表 ' ;
INSERT INTO dept (id, name) VALUES ( 1 , ' 研发部 ' ), ( 2 , ' 市场部 ' ),( 3 , ' 财务部 ' ), ( 4 ,
' 销售部 ' ), ( 5 , ' 总经办 ' ), ( 6 , ' 人事部 ' );
-- 创建 emp 表,并插入数据
create table emp(
id int auto_increment comment 'ID' primary key,
dept 表共 6 条记录, emp 表共 17 条记录。
5.2.2 概述
多表查询就是指从多张表中查询数据。
name varchar ( 50 ) not null comment ' 姓名 ' ,
age int comment ' 年龄 ' ,
job varchar ( 20 ) comment ' 职位 ' ,
salary int comment ' 薪资 ' ,
entrydate date comment ' 入职时间 ' ,
managerid int comment ' 直属领导 ID' ,
dept_id int comment ' 部门 ID'
)comment ' 员工表 ' ;
-- 添加外键
alter table emp add constraint fk_emp_dept_id foreign key (dept_id) references
dept(id);
INSERT INTO emp (id, name, age, job,salary, entrydate, managerid, dept_id)
VALUES
( 1 , ' 金庸 ' , 66 , ' 总裁 ' , 20000 , '2000-01-01' , null , 5 ),
( 2 , ' 张无忌 ' , 20 , ' 项目经理 ' , 12500 , '2005-12-05' , 1 , 1 ),
( 3 , ' 杨逍 ' , 33 , ' 开发 ' , 8400 , '2000-11-03' , 2 , 1 ),
( 4 , ' 韦一笑 ' , 48 , ' 开发 ' , 11000 , '2002-02-05' , 2 , 1 ),
( 5 , ' 常遇春 ' , 43 , ' 开发 ' , 10500 , '2004-09-07' , 3 , 1 ),
( 6 , ' 小昭 ' , 19 , ' 程序员鼓励师 ' , 6600 , '2004-10-12' , 2 , 1 ),
( 7 , ' 灭绝 ' , 60 , ' 财务总监 ' , 8500 , '2002-09-12' , 1 , 3 ),
( 8 , ' 周芷若 ' , 19 , ' 会计 ' , 48000 , '2006-06-02' , 7 , 3 ),
( 9 , ' 丁敏君 ' , 23 , ' 出纳 ' , 5250 , '2009-05-13' , 7 , 3 ),
( 10 , ' 赵敏 ' , 20 , ' 市场部总监 ' , 12500 , '2004-10-12' , 1 , 2 ),
( 11 , ' 鹿杖客 ' , 56 , ' 职员 ' , 3750 , '2006-10-03' , 10 , 2 ),
( 12 , ' 鹤笔翁 ' , 19 , ' 职员 ' , 3750 , '2007-05-09' , 10 , 2 ),
( 13 , ' 方东白 ' , 19 , ' 职员 ' , 5500 , '2009-02-12' , 10 , 2 ),
( 14 , ' 张三丰 ' , 88 , ' 销售总监 ' , 14000 , '2004-10-12' , 1 , 4 ),
( 15 , ' 俞莲舟 ' , 38 , ' 销售 ' , 4600 , '2004-10-12' , 14 , 4 ),
( 16 , ' 宋远桥 ' , 40 , ' 销售 ' , 4600 , '2004-10-12' , 14 , 4 ),
( 17 , ' 陈友谅 ' , 42 , null , 2000 , '2011-10-12' , 1 , null );
原来查询单表数据,执行的SQL 形式为: select * from emp;
那么我们要执行多表查询,就只需要使用逗号分隔多张表即可,如: select * from emp , dept
; 具体的执行结果如下 :
此时 , 我们看到查询结果中包含了大量的结果集,总共 102 条记录,而这其实就是员工表 emp 所有的记录
(17) 与 部门表 dept 所有记录 (6) 的所有组合情况,这种现象称之为笛卡尔积。接下来,就来简单
介绍下笛卡尔积。
笛卡尔积 : 笛卡尔乘积是指在数学中,两个集合 A 集合 和 B 集合的所有组合情况。
而在多表查询中,我们是需要消除无效的笛卡尔积的,只保留两张表关联部分的数据。
SQL 语句中,如何来去除无效的笛卡尔积呢? 我们可以给多表查询加上连接查询的条件即可。 select * from emp , dept where emp.dept_id = dept.id;
而由于 id 17 的员工,没有 dept_id 字段值,所以在多表查询时,根据连接查询的条件并没有查询
到。
5.2.3 分类
连接查询
内连接:相当于查询 A B 交集部分数据
外连接:
左外连接:查询左表所有数据,以及两张表交集部分数据
右外连接:查询右表所有数据,以及两张表交集部分数据
自连接:当前表与自身的连接查询,自连接必须使用表别名
子查询
5.3 内连接
内连接查询的是两张表交集部分的数
据。 ( 也就是绿色部分的数据 )
内连接的语法分为两种 : 隐式内连接、显式内连接。先来学习一下具体的语法结构。 1). 隐式内连接
2). 显式内连接
案例 :
A. 查询每一个员工的姓名 , 及关联的部门的名称 ( 隐式内连接实现 )
表结构 : emp , dept
连接条件 : emp.dept_id = dept.id
B. 查询每一个员工的姓名 , 及关联的部门的名称 ( 显式内连接实现 ) --- INNER JOIN ...
ON ...
表结构 : emp , dept
连接条件 : emp.dept_id = dept.id
表的别名 :
. tablea as 别名 1 , tableb as 别名 2 ;
. tablea 别名 1 , tableb 别名 2 ;
注意事项 :
SELECT 字段列表 FROM 1 , 2 WHERE 条件 ... ;
1
SELECT 字段列表 FROM 1 [ INNER ] JOIN 2 ON 连接条件 ... ;
1
select emp .name , dept .name from emp , dept where emp .dept_id = dept .id ;
-- 为每一张表起别名 , 简化 SQL 编写
select e .name ,d .name from emp e , dept d where e .dept_id = d .id ;
select e .name , d .name from emp e inner join dept d on e .dept_id = d .id ;
-- 为每一张表起别名 , 简化 SQL 编写
select e .name , d .name from emp e join dept d on e .dept_id = d .id ;
一旦为表起了别名,就不能再使用表名来指定对应的字段了,此时只能够使用别名来指定字
段。
5.4 外连接
外连接分为两种,分别是:左外连接 和 右外连接。具体的语法结构为:
1). 左外连接
左外连接相当于查询表 1( 左表 ) 的所有数据,当然也包含表 1 和表 2 交集部分的数据。
2). 右外连接
右外连接相当于查询表 2( 右表 ) 的所有数据,当然也包含表 1 和表 2 交集部分的数据。
案例 :
A. 查询 emp 表的所有数据 , 和对应的部门信息
由于需求中提到,要查询 emp 的所有数据,所以是不能内连接查询的,需要考虑使用外连接查询。
表结构 : emp, dept
连接条件 : emp.dept_id = dept.id
B. 查询 dept 表的所有数据 , 和对应的员工信息 ( 右外连接 )
SELECT 字段列表 FROM 1 LEFT [ OUTER ] JOIN 2 ON 条件 ... ;
1
SELECT 字段列表 FROM 1 RIGHT [ OUTER ] JOIN 2 ON 条件 ... ;
1
select e.*, d .name from emp e left outer join dept d on e .dept_id = d .id ;
select e.*, d .name from emp e left join dept d on e .dept_id = d .id ;
1
2
3 由于需求中提到,要查询 dept 表的所有数据,所以是不能内连接查询的,需要考虑使用外连接查
询。
表结构 : emp, dept
连接条件 : emp.dept_id = dept.id
注意事项:
左外连接和右外连接是可以相互替换的,只需要调整在连接查询时 SQL 中,表结构的先后顺
序就可以了。而我们在日常开发使用时,更偏向于左外连接。
5.5 自连接
5.5.1 自连接查询
自连接查询,顾名思义,就是自己连接自己,也就是把一张表连接查询多次。我们先来学习一下自连接
的查询语法:
而对于自连接查询,可以是内连接查询,也可以是外连接查询。
案例:
A. 查询员工 及其 所属领导的名字
表结构 : emp
B. 查询所有员工 emp 及其领导的名字 emp , 如果员工没有领导 , 也需要查询出来
表结构 : emp a , emp b
select d.*, e.* from emp e right outer join dept d on e .dept_id = d .id ;
select d.*, e.* from dept d left outer join emp e on e .dept_id = d .id ;
1
2
3
SELECT 字段列表 FROM A 别名 A JOIN A 别名 B ON 条件 ... ;
1
select a .name , b .name from emp a , emp b where a .managerid = b .id ;
1 注意事项 :
在自连接查询中,必须要为表起别名,要不然我们不清楚所指定的条件、返回的字段,到底
是哪一张表的字段。
5.5.2 联合查询
对于 union 查询,就是把多次查询的结果合并起来,形成一个新的查询结果集。
对于联合查询的多张表的列数必须保持一致,字段类型也需要保持一致。
union all 会将全部的数据直接合并在一起, union 会对合并之后的数据去重。
案例 :
A. 将薪资低于 5000 的员工 , 和 年龄大于 50 岁的员工全部查询出来 .
当前对于这个需求,我们可以直接使用多条件查询,使用逻辑运算符 or 连接即可。 那这里呢,我们
也可以通过 union/union all 来联合查询 .
select a .name ' 员工 ' , b .name ' 领导 ' from emp a left join emp b on a .managerid =
b .id ;
1
SELECT 字段列表 FROM A ...
UNION [ ALL ]
SELECT 字段列表 FROM B ....;
1
2
3
select * from emp where salary < 5000
union all
select * from emp where age > 50 ;
1
2
3 union all 查询出来的结果,仅仅进行简单的合并,并未去重。
union 联合查询,会对查询出来的结果进行去重处理。
注意:
如果多条查询语句查询出来的结果,字段数量不一致,在进行 union/union all 联合查询时,将会报
错。如:
5.6 子查询
5.6.1 概述
1). 概念
SQL 语句中嵌套 SELECT 语句,称为嵌套查询,又称子查询。
子查询外部的语句可以是 INSERT / UPDATE / DELETE / SELECT 的任何一个。
2). 分类
select * from emp where salary < 5000
union
select * from emp where age > 50 ;
1
2
3
SELECT * FROM t1 WHERE column1 = ( SELECT column1 FROM t2 );
1 根据子查询结果不同,分为:
A. 标量子查询(子查询结果为单个值)
B. 列子查询 ( 子查询结果为一列 )
C. 行子查询 ( 子查询结果为一行 )
D. 表子查询 ( 子查询结果为多行多列 )
根据子查询位置,分为:
A. WHERE 之后
B. FROM 之后
C. SELECT 之后
5.6.2 标量子查询
子查询返回的结果是单个值(数字、字符串、日期等),最简单的形式,这种子查询称为标量子查询。
常用的操作符: = <> > >= < <=
案例 :
A. 查询 " 销售部 " 的所有员工信息
完成这个需求时,我们可以将需求分解为两步:
. 查询 " 销售部 " 部门 ID
. 根据 " 销售部 " 部门 ID, 查询员工信息
B. 查询在 " 方东白 " 入职之后的员工信息
完成这个需求时,我们可以将需求分解为两步:
. 查询 方东白 的入职日期
select id from dept where name = ' 销售部 ' ;
1
select * from emp where dept_id = ( select id from dept where name = ' 销售部 ' );
1 操作符
描述
IN
在指定的集合范围之内,多选一
NOT IN
不在指定的集合范围之内
ANY
子查询返回列表中,有任意一个满足即可
SOME
ANY 等同,使用 SOME 的地方都可以使用 ANY
ALL
子查询返回列表的所有值都必须满足
. 查询指定入职日期之后入职的员工信息
5.6.3 列子查询
子查询返回的结果是一列(可以是多行),这种子查询称为列子查询。
常用的操作符: IN NOT IN ANY SOME ALL
案例 :
A. 查询 " 销售部 " " 市场部 " 的所有员工信息
分解为以下两步 :
. 查询 " 销售部 " " 市场部 " 的部门 ID
. 根据部门 ID, 查询员工信息
B. 查询比 财务部 所有人工资都高的员工信息
select entrydate from emp where name = ' 方东白 ' ;
1
select * from emp where entrydate > ( select entrydate from emp where name = ' 方东
' );
1
select id from dept where name = ' 销售部 ' or name = ' 市场部 ' ;
1
select * from emp where dept_id in ( select id from dept where name = ' 销售部 ' or
name = ' 市场部 ' );
1 分解为以下两步 :
. 查询所有 财务部 人员工资
. 比 财务部 所有人工资都高的员工信息
C. 查询比研发部其中任意一人工资高的员工信息
分解为以下两步 :
. 查询研发部所有人工资
. 比研发部其中任意一人工资高的员工信息
5.6.4 行子查询
子查询返回的结果是一行(可以是多列),这种子查询称为行子查询。
常用的操作符: = <> IN NOT IN
案例 :
A. 查询与 " 张无忌 " 的薪资及直属领导相同的员工信息 ;
这个需求同样可以拆解为两步进行 :
. 查询 " 张无忌 " 的薪资及直属领导
select id from dept where name = ' 财务部 ' ;
select salary from emp where dept_id = ( select id from dept where name = ' 财务部 ' );
1
2
3
select * from emp where salary > all ( select salary from emp where dept_id =
( select id from dept where name = ' 财务部 ' ) );
1
select salary from emp where dept_id = ( select id from dept where name = ' 研发部 ' );
1
select * from emp where salary > any ( select salary from emp where dept_id =
( select id from dept where name = ' 研发部 ' ) );
1
select salary, managerid from emp where name = ' 张无忌 ' ;
1 . 查询与 " 张无忌 " 的薪资及直属领导相同的员工信息 ;
5.6.5 表子查询
子查询返回的结果是多行多列,这种子查询称为表子查询。
常用的操作符: IN
案例 :
A. 查询与 " 鹿杖客 " , " 宋远桥 " 的职位和薪资相同的员工信息
分解为两步执行 :
. 查询 " 鹿杖客 " , " 宋远桥 " 的职位和薪资
. 查询与 " 鹿杖客 " , " 宋远桥 " 的职位和薪资相同的员工信息
B. 查询入职日期是 "2006-01-01" 之后的员工信息 , 及其部门信息
分解为两步执行 :
. 入职日期是 "2006-01-01" 之后的员工信息
. 查询这部分员工 , 对应的部门信息 ;
select * from emp where (salary,managerid) = ( select salary, managerid from emp
where name = ' 张无忌 ' );
1
select job, salary from emp where name = ' 鹿杖客 ' or name = ' 宋远桥 ' ;
1
select * from emp where (job,salary) in ( select job, salary from emp where name =
' 鹿杖客 ' or name = ' 宋远桥 ' );
1
select * from emp where entrydate > '2006-01-01' ;
1
select e.*, d.* from ( select * from emp where entrydate > '2006-01-01' ) e left
join dept d on e .dept_id = d .id ;
5.7 多表查询案例
数据环境准备 :
在这个案例中,我们主要运用上面所讲解的多表查询的语法,完成以下的 12 个需求即可,而这里主要涉
及到的表就三张: emp 员工表、 dept 部门表、 salgrade 薪资等级表 。
1). 查询员工的姓名、年龄、职位、部门信息 (隐式内连接)
: emp , dept
连接条件 : emp.dept_id = dept.id
2). 查询年龄小于 30 岁的员工的姓名、年龄、职位、部门信息(显式内连接)
: emp , dept
连接条件 : emp.dept_id = dept.id
create table salgrade(
grade int ,
losal int ,
hisal int
) comment ' 薪资等级表 ' ;
insert into salgrade values ( 1 , 0 , 3000 );
insert into salgrade values ( 2 , 3001 , 5000 );
insert into salgrade values ( 3 , 5001 , 8000 );
insert into salgrade values ( 4 , 8001 , 10000 );
insert into salgrade values ( 5 , 10001 , 15000 );
insert into salgrade values ( 6 , 15001 , 20000 );
insert into salgrade values ( 7 , 20001 , 25000 );
insert into salgrade values ( 8 , 25001 , 30000 );
select e .name , e .age , e .job , d .name from emp e , dept d where e .dept_id = d .id ;
1
select e .name , e .age , e .job , d .name from emp e inner join dept d on e .dept_id =
d .id where e .age < 30 ;
1 3). 查询拥有员工的部门 ID 、部门名称
: emp , dept
连接条件 : emp.dept_id = dept.id
4). 查询所有年龄大于 40 岁的员工 , 及其归属的部门名称 ; 如果员工没有分配部门 , 也需要展示出
( 外连接 )
: emp , dept
连接条件 : emp.dept_id = dept.id
5). 查询所有员工的工资等级
: emp , salgrade
连接条件 : emp.salary >= salgrade.losal and emp.salary <= salgrade.hisal
6). 查询 " 研发部 " 所有员工的信息及 工资等级
: emp , salgrade , dept
连接条件 : emp.salary between salgrade.losal and salgrade.hisal ,
emp.dept_id = dept.id
查询条件 : dept.name = ' 研发部 '
select distinct d .id , d .name from emp e , dept d where e .dept_id = d .id ;
1
select e.*, d .name from emp e left join dept d on e .dept_id = d .id where e .age >
40 ;
1
-- 方式一
select e.* , s .grade , s .losal , s .hisal from emp e , salgrade s where e .salary >=
s .losal and e .salary <= s .hisal ;
-- 方式二
select e.* , s .grade , s .losal , s .hisal from emp e , salgrade s where e .salary
between s .losal and s .hisal ;
1
2
3
4
select e.* , s .grade from emp e , dept d , salgrade s where e .dept_id = d .id and (
e .salary between s .losal and s .hisal ) and d .name = ' 研发部 ' ;
1 7). 查询 " 研发部 " 员工的平均工资
: emp , dept
连接条件 : emp.dept_id = dept.id
8). 查询工资比 " 灭绝 " 高的员工信息。
. 查询 " 灭绝 " 的薪资
. 查询比她工资高的员工数据
9). 查询比平均薪资高的员工信息
. 查询员工的平均薪资
. 查询比平均薪资高的员工信息
10). 查询低于本部门平均工资的员工信息
. 查询指定部门平均薪资
. 查询低于本部门平均工资的员工信息
select avg(e .salary ) from emp e, dept d where e .dept_id = d .id and d .name = ' 研发
' ;
1
select salary from emp where name = ' 灭绝 ' ;
1
select * from emp where salary > ( select salary from emp where name = ' 灭绝 ' );
1
select avg(salary) from emp;
1
select * from emp where salary > ( select avg(salary) from emp );
1
select avg(e1 .salary ) from emp e1 where e1 .dept_id = 1 ;
select avg(e1 .salary ) from emp e1 where e1 .dept_id = 2 ;
1
2
select * from emp e2 where e2 .salary < ( select avg(e1 .salary ) from emp e1 where
e1 .dept_id = e2 .dept_id );
1 11). 查询所有的部门信息 , 并统计部门的员工人数
12). 查询所有学生的选课情况 , 展示出学生名称 , 学号 , 课程名称
: student , course , student_course
连接条件 : student.id = student_course.studentid , course.id =
student_course.courseid
备注 : 以上需求的实现方式可能会很多 , SQL 写法也有很多,只要能满足我们的需求,查询出符合条
件的记录即可。
6. 事务
6.1 事务简介
事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系
统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。
就比如 : 张三给李四转账 1000 块钱,张三银行账户的钱减少 1000 ,而李四银行账户的钱要增加
1000 。 这一组操作就必须在一个事务的范围内,要么都成功,要么都失败。
正常情况 : 转账这个操作 , 需要分为以下这么三步来完成 , 三步完成之后 , 张三减少 1000, 而李四
增加 1000, 转账成功 :
select d .id , d .name , ( select count (*) from emp e where e .dept_id = d .id ) ' 人数 '
from dept d;
1
select s .name , s .no , c .name from student s , student_course sc , course c where
s .id = sc .studentid and sc .courseid = c .id ;
1
异常情况 : 转账这个操作 , 也是分为以下这么三步来完成 , 在执行第三步是报错了 , 这样就导致张
三减少 1000 块钱 , 而李四的金额没变 , 这样就造成了数据的不一致 , 就出现问题了。
为了解决上述的问题,就需要通过数据的事务来完成,我们只需要在业务逻辑执行之前开启事务,执行
完毕后提交事务。如果执行过程中报错,则回滚事务,把数据恢复到事务开始之前的状态。
注意: 默认 MySQL 的事务是自动提交的,也就是说,当执行完一条 DML 语句时, MySQL 会立即隐
式的提交事务。
6.2 事务操作
数据准备: 6.2.1 未控制事务
1). 测试正常情况
测试完毕之后检查数据的状态 , 可以看到数据操作前后是一致的。
2). 测试异常情况
drop table if exists account;
create table account(
id int primary key AUTO_INCREMENT comment 'ID' ,
name varchar ( 10 ) comment ' 姓名 ' ,
money double ( 10 , 2 ) comment ' 余额 '
) comment ' 账户表 ' ;
insert into account(name, money) VALUES ( ' 张三 ' , 2000 ), ( ' 李四 ' , 2000 );
-- 1. 查询张三余额
select * from account where name = ' 张三 ' ;
-- 2. 张三的余额减少 1000
update account set money = money - 1000 where name = ' 张三 ' ;
-- 3. 李四的余额增加 1000
update account set money = money + 1000 where name = ' 李四 ' ;
-- 1. 查询张三余额
select * from account where name = ' 张三 ' ;
-- 2. 张三的余额减少 1000
update account set money = money - 1000 where name = ' 张三 ' ;
出错了 ....
-- 3. 李四的余额增加 1000
update account set money = money + 1000 where name = ' 李四 ' ;
我们把数据都恢复到 2000 , 然后再次一次性执行上述的 SQL 语句 ( 出错了 .... 这句话不符合 SQL
, 执行就会报错 ) ,检查最终的数据情况 , 发现数据在操作前后不一致了。
6.2.2 控制事务一
1). 查看 / 设置事务提交方式
2). 提交事务
3). 回滚事务
注意:上述的这种方式,我们是修改了事务的自动提交行为 , 把默认的自动提交修改为了手动提
, 此时我们执行的 DML 语句都不会提交 , 需要手动的执行 commit 进行提交。
6.2.3 控制事务二
1). 开启事务
2). 提交事务
3). 回滚事务
SELECT @@autocommit ;
SET @@autocommit = 0 ;
1
2
COMMIT;
1
ROLLBACK;
1
START TRANSACTION BEGIN ;
1
COMMIT;
1 转账案例:
6.3 事务四大特性
原子性( Atomicity ):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。
一致性( Consistency ):事务完成时,必须使所有的数据都保持一致状态。
隔离性( Isolation ):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立
环境下运行。
持久性( Durability ):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。
上述就是事务的四大特性,简称 ACID
ROLLBACK;
1
-- 开启事务
start transaction
-- 1. 查询张三余额
select * from account where name = ' 张三 ' ;
-- 2. 张三的余额减少 1000
update account set money = money - 1000 where name = ' 张三 ' ;
-- 3. 李四的余额增加 1000
update account set money = money + 1000 where name = ' 李四 ' ;
-- 如果正常执行完毕 , 则提交事务
commit;
-- 如果执行过程中报错 , 则回滚事务
-- rollback;
6.4 并发事务问题
1). 赃读:一个事务读到另外一个事务还没有提交的数据。
比如 B 读取到了 A 未提交的数据。
2). 不可重复读:一个事务先后读取同一条记录,但两次读取的数据不同,称之为不可重复读。
事务 A 两次读取同一条记录,但是读取到的数据却是不一样的。 隔离级别
脏读
不可重复读
幻读
Read uncommitted
Read committed
×
Repeatable Read( 默认 )
×
×
Serializable
×
×
×
3). 幻读:一个事务按照条件查询数据时,没有对应的数据行,但是在插入数据时,又发现这行数据
已经存在,好像出现了 " 幻影 "
6.5 事务隔离级别
为了解决并发事务所引发的问题,在数据库中引入了事务隔离级别。主要有以下几种:
1). 查看事务隔离级别
2). 设置事务隔离级别
注意:事务隔离级别越高,数据越安全,但是性能越低。
SELECT @@TRANSACTION_ISOLATION;
1
SET [ SESSION | GLOBAL ] TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED |
READ COMMITTED | REPEATABLE READ | SERIALIZABLE }
1. 存储引擎
1.1 MySQL 体系结构
1). 连接层
最上层是一些客户端和链接服务,包含本地 sock 通信和大多数基于客户端 / 服务端工具实现的类似于
TCP/IP 的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程
池的概念,为通过认证安全接入的客户端提供线程。同样在该层上可以实现基于 SSL 的安全链接。服务
器也会为安全接入的每个客户端验证它所具有的操作权限。
2). 服务层
第二层架构主要完成大多数的核心服务功能,如 SQL 接口,并完成缓存的查询, SQL 的分析和优化,部
分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如 过程、函数等。在该层,服务器会解
析查询并创建相应的内部解析树,并对其完成相应的优化如确定表的查询的顺序,是否利用索引等,
最后生成相应的执行操作。如果是 select 语句,服务器还会查询内部的缓存,如果缓存空间足够大,
这样在解决大量读操作的环境中能够很好的提升系统的性能。
3). 引擎层
存储引擎层, 存储引擎真正的负责了 MySQL 中数据的存储和提取,服务器通过 API 和存储引擎进行通
信。不同的存储引擎具有不同的功能,这样我们可以根据自己的需要,来选取合适的存储引擎。数据库
中的索引是在存储引擎层实现的。
4). 存储层 数据存储层, 主要是将数据 ( : redolog undolog 、数据、索引、二进制日志、错误日志、查询
日志、慢查询日志等 ) 存储在文件系统之上,并完成与存储引擎的交互。
和其他数据库相比, MySQL 有点与众不同,它的架构可以在多种不同场景中应用并发挥良好作用。主要
体现在存储引擎上,插件式的存储引擎架构,将查询处理和其他的系统任务以及数据的存储提取分离。
这种架构可以根据业务的需求和实际需要选择合适的存储引擎。
1.2 存储引擎介绍
大家可能没有听说过存储引擎,但是一定听过引擎这个词,引擎就是发动机,是一个机器的核心组件。
比如,对于舰载机、直升机、火箭来说,他们都有各自的引擎,是他们最为核心的组件。而我们在选择
引擎的时候,需要在合适的场景,选择合适的存储引擎,就像在直升机上,我们不能选择舰载机的引擎
一样。
而对于存储引擎,也是一样,他是 mysql 数据库的核心,我们也需要在合适的场景选择合适的存储引
擎。接下来就来介绍一下存储引擎。
存储引擎就是存储数据、建立索引、更新 / 查询数据等技术的实现方式 。存储引擎是基于表的,而不是
基于库的,所以存储引擎也可被称为表类型。我们可以在创建表的时候,来指定选择的存储引擎,如果
没有指定将自动选择默认的存储引擎。
1). 建表时指定存储引擎
2). 查询当前数据库支持的存储引擎
CREATE TABLE 表名 (
字段 1 字段 1 类型 [ COMMENT 字段 1 注释 ] ,
......
字段 n 字段 n 类型 [COMMENT 字段 n 注释 ]
) ENGINE = INNODB [ COMMENT 表注释 ] ;
show engines;
1 示例演示 :
A. 查询建表语句 --- 默认存储引擎 : InnoDB
我们可以看到,创建表时,即使我们没有指定存储疫情,数据库也会自动选择默认的存储引擎。
B. 查询当前数据库支持的存储引擎
C. 创建表 my_myisam , 并指定 MyISAM 存储引擎
D. 创建表 my_memory , 指定 Memory 存储引擎
1.3 存储引擎特点
show create table account;
1
show engines ;
1
create table my_myisam(
id int ,
name varchar ( 10 )
) engine = MyISAM ;
1
2
3
4
create table my_memory(
id int ,
name varchar ( 10 )
) engine = Memory ;
上面我们介绍了什么是存储引擎,以及如何在建表时如何指定存储引擎,接下来我们就来介绍下来上面
重点提到的三种存储引擎 InnoDB MyISAM Memory 的特点。
1.3.1 InnoDB
1). 介绍
InnoDB 是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后, InnoDB 是默认的
MySQL 存储引擎。
2). 特点
DML 操作遵循 ACID 模型,支持事务;
行级锁,提高并发访问性能;
支持外键 FOREIGN KEY 约束,保证数据的完整性和正确性;
3). 文件
xxx.ibd xxx 代表的是表名, innoDB 引擎的每张表都会对应这样一个表空间文件,存储该表的表结
构( frm- 早期的 、 sdi- 新版的)、数据和索引。
参数: innodb_file_per_table
如果该参数开启,代表对于 InnoDB 引擎的表,每一张表都对应一个 ibd 文件。 我们直接打开 MySQL
数据存放目录: C:\ProgramData\MySQL\MySQL Server 8.0\Data , 这个目录下有很多文件
夹,不同的文件夹代表不同的数据库,我们直接打开 itcast 文件夹。
可以看到里面有很多的 ibd 文件,每一个 ibd 文件就对应一张表,比如:我们有一张表 account ,就
有这样的一个 account.ibd 文件,而在这个 ibd 文件中不仅存放表结构、数据,还会存放该表对应的
索引信息。 而该文件是基于二进制存储的,不能直接基于记事本打开,我们可以使用 mysql 提供的一
个指令 ibd2sdi ,通过该指令就可以从 ibd 文件中提取 sdi 信息,而 sdi 数据字典信息中就包含该表
show variables like 'innodb_file_per_table' ;
1 的表结构。
4). 逻辑存储结构
表空间 : InnoDB 存储引擎逻辑结构的最高层, ibd 文件其实就是表空间文件,在表空间中可以
包含多个 Segment 段。
: 表空间是由各个段组成的, 常见的段有数据段、索引段、回滚段等。 InnoDB 中对于段的管
理,都是引擎自身完成,不需要人为对其控制,一个段中包含多个区。
: 区是表空间的单元结构,每个区的大小为 1M 。 默认情况下, InnoDB 存储引擎页大小为
16K , 即一个区中一共有 64 个连续的页。
: 页是组成区的最小单元, 页也是 InnoDB 存储引擎磁盘管理的最小单元 ,每个页的大小默
认为 16KB 。为了保证页的连续性, InnoDB 存储引擎每次从磁盘申请 4-5 个区。
: InnoDB 存储引擎是面向行的,也就是说数据是按行进行存放的,在每一行中除了定义表时
所指定的字段以外,还包含两个隐藏字段 ( 后面会详细介绍 )
1.3.2 MyISAM
1). 介绍
MyISAM MySQL 早期的默认存储引擎。 2). 特点
不支持事务,不支持外键
支持表锁,不支持行锁
访问速度快
3). 文件
xxx.sdi :存储表结构信息
xxx.MYD: 存储数据
xxx.MYI: 存储索引
1.3.3 Memory
1). 介绍
Memory 引擎的表数据时存储在内存中的,由于受到硬件问题、或断电问题的影响,只能将这些表作为
临时表或缓存使用。
2). 特点
内存存放
hash 索引(默认)
3). 文件
xxx.sdi :存储表结构信息
1.3.4 区别及特点 特点
InnoDB
MyISAM
Memory
存储限制
64TB
事务安全
支持
-
-
锁机制
行锁
表锁
表锁
B+tree 索引
支持
支持
支持
Hash 索引
-
-
支持
全文索引
支持 (5.6 版本之后 )
支持
-
空间使用
N/A
内存使用
中等
批量插入速度
支持外键
支持
-
-
面试题 :
InnoDB 引擎与 MyISAM 引擎的区别 ?
. InnoDB 引擎 , 支持事务 , MyISAM 不支持。
. InnoDB 引擎 , 支持行锁和表锁 , MyISAM 仅支持表锁 , 不支持行锁。
. InnoDB 引擎 , 支持外键 , MyISAM 是不支持的。
主要是上述三点区别,当然也可以从索引结构、存储限制等方面,更加深入的回答,具体参
考如下官方文档:
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
1.4 存储引擎选择 在选择存储引擎时,应该根据应用系统的特点选择合适的存储引擎。对于复杂的应用系统,还可以根据
实际情况选择多种存储引擎进行组合。
InnoDB: Mysql 的默认存储引擎,支持事务、外键。如果应用对事务的完整性有比较高的要
求,在并发条件下要求数据的一致性,数据操作除了插入和查询之外,还包含很多的更新、删除操
作,那么 InnoDB 存储引擎是比较合适的选择。
MyISAM : 如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完
整性、并发性要求不是很高,那么选择这个存储引擎是非常合适的。
MEMORY :将所有数据保存在内存中,访问速度快,通常用于临时表及缓存。 MEMORY 的缺陷就是
对表的大小有限制,太大的表无法缓存在内存中,而且无法保障数据的安全性。
2. 索引
2.1 索引概述
2.1.1 介绍
索引( index )是帮助 MySQL 高效获取数据的数据结构 ( 有序 ) 。在数据之外,数据库系统还维护着满足
特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构
上实现高级查找算法,这种数据结构就是索引。
一提到数据结构,大家都会有所担心,担心自己不能理解,跟不上节奏。不过在这里大家完全不用担
心,我们后面在讲解时,会详细介绍。
2.2 演示
表结构及其数据如下: 假如我们要执行的 SQL 语句为 : select * from user where age = 45;
1). 无索引情况
在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很
低。
2). 有索引情况 优势
劣势
提高数据检索的效率,降低数据库
IO 成本
索引列也是要占用空间的。
通过索引列对数据进行排序,降低
数据排序的成本,降低 CPU 的消
耗。
索引大大提高了查询效率,同时却也降低更新表的速度,
如对表进行 INSERT UPDATE DELETE 时,效率降低。
如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对 age 这个字段建
立一个二叉树的索引结构。
此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。
备注: 这里我们只是假设索引的结构是二叉树,介绍一下索引的大概原理,只是一个示意图,并
不是索引的真实结构,索引的真实结构,后面会详细介绍。
2.3 特点
2.2 索引结构
2.2.1 概述
MySQL 的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种: 索引结构
描述
B+Tree 索引
最常见的索引类型,大部分引擎都支持 B+ 树索引
Hash 索引
底层数据结构是用哈希表实现的 , 只有精确匹配索引列的查询才有效 ,
支持范围查询
R-tree( 空间索
引)
空间索引是 MyISAM 引擎的一个特殊索引类型,主要用于地理空间数据类
型,通常使用较少
Full-text( 全文
索引 )
是一种通过建立倒排索引 , 快速匹配文档的方式。类似于
Lucene,Solr,ES
索引
InnoDB
MyISAM
Memory
B+tree 索引
支持
支持
支持
Hash 索引
不支持
不支持
支持
R-tree 索引
不支持
支持
不支持
Full-text
5.6 版本之后支持
支持
不支持
上述是 MySQL 中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持
情况。
注意: 我们平常所说的索引,如果没有特别指明,都是指 B+ 树结构组织的索引。
2.2.2 二叉树
假如说 MySQL 的索引结构采用二叉树的数据结构,比较理想的结构如下:
如果主键是顺序插入的,则会形成一个单向链表,结构如下:
所以,如果选择二叉树作为索引结构,会存在以下缺点:
顺序插入时,会形成一个链表,查询性能大大降低。
大数据量情况下,层级较深,检索速度慢。
此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数
据,最终形成的数据结构也是一颗平衡的二叉树 , 结构如下 : 但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:
大数据量情况下,层级较深,检索速度慢。
所以,在 MySQL 的索引结构中,并没有选择二叉树或者红黑树,而选择的是 B+Tree ,那么什么是
B+Tree 呢?在详解 B+Tree 之前,先来介绍一个 B-Tree
2.2.3 B-Tree
B-Tree B 树是一种多叉路衡查找树,相对于二叉树, B 树每个节点可以有多个分支,即多叉。
以一颗最大度数( max-degree )为 5(5 ) b-tree 为例,那这个 B 树每个节点最多存储 4 key 5
个指针:
知识小贴士 : 树的度数指的是一个节点的子节点个数。
我们可以通过一个数据结构可视化的网站来简单演示一下。 https://www.cs.usfca.edu/~gall
es/visualization/BTree.html 插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88
120 268 250 。然后观察一些数据插入过程中,节点的变化情况。
特点:
5 阶的 B 树,每一个节点最多存储 4 key ,对应 5 个指针。
一旦节点存储的 key 数量到达 5 ,就会裂变,中间元素向上分裂。
B 树中,非叶子节点和叶子节点都会存放数据。
2.2.4 B+Tree
B+Tree B-Tree 的变种,我们以一颗最大度数( max-degree )为 4
4 阶)的 b+tree 为例,来看一
下其结构示意图:
我们可以看到,两部分:
绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。
我们可以通过一个数据结构可视化的网站来简单演示一下。 https://www.cs.usfca.edu/~gall
es/visualization/BPlusTree.html 插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88
120 268 250 。然后观察一些数据插入过程中,节点的变化情况。
最终我们看到, B+Tree B-Tree 相比,主要有以下三点区别:
所有的数据都会出现在叶子节点。
叶子节点形成一个单向链表。
非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。
上述我们所看到的结构是标准的 B+Tree 的数据结构,接下来,我们再来看看 MySQL 中优化之后的
B+Tree
MySQL 索引数据结构对经典的 B+Tree 进行了优化。在原 B+Tree 的基础上,增加一个指向相邻叶子节点
的链表指针,就形成了带有顺序指针的 B+Tree ,提高区间访问的性能,利于排序。
2.2.5 Hash
MySQL 中除了支持 B+Tree 索引,还支持一种索引类型 ---Hash 索引。
1). 结构
哈希索引就是采用一定的 hash 算法,将键值换算成新的 hash 值,映射到对应的槽位上,然后存储在
hash 表中。 如果两个 ( 或多个 ) 键值,映射到一个相同的槽位上,他们就产生了 hash 冲突(也称为 hash 碰撞),可
以通过链表来解决。
2). 特点
A. Hash 索引只能用于对等比较 (= in) ,不支持范围查询( between > < ...
B. 无法利用索引完成排序操作
C. 查询效率高,通常 ( 不存在 hash 冲突的情况 ) 只需要一次检索就可以了,效率通常要高于 B+tree
3). 存储引擎支持
MySQL 中,支持 hash 索引的是 Memory 存储引擎。 而 InnoDB 中具有自适应 hash 功能, hash 索引是
InnoDB 存储引擎根据 B+Tree 索引在指定条件下自动构建的。
思考题: 为什么 InnoDB 存储引擎选择使用 B+tree 索引结构 ? 分类
含义
特点
关键字
主键
索引
针对于表中主键创建的索引
默认自动创建 , 只能
有一个
PRIMARY
唯一
索引
避免同一个表中某数据列中的值重复
可以有多个
UNIQUE
常规
索引
快速定位特定数据
可以有多个
全文
索引
全文索引查找的是文本中的关键词,而不是比
较索引中的值
可以有多个
FULLTEXT
分类
含义
特点
聚集索引 (Clustered
Index)
将数据存储与索引放到了一块,索引结构的叶子
节点保存了行数据
必须有 , 而且只
有一个
二级索引 (Secondary
Index)
将数据与索引分开存储,索引结构的叶子节点关
联的是对应的主键
可以存在多个
A. 相对于二叉树,层级更少,搜索效率高;
B. 对于 B-tree ,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储
的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低;
C. 相对 Hash 索引, B+tree 支持范围匹配及排序操作;
2.3 索引分类
2.3.1 索引分类
MySQL 数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。
2.3.2 聚集索引 & 二级索引
而在在 InnoDB 存储引擎中,根据索引的存储形式,又可以分为以下两种:
聚集索引选取规则 :
如果存在主键,主键索引就是聚集索引。 如果不存在主键,将使用第一个唯一( UNIQUE )索引作为聚集索引。
如果表没有主键,或没有合适的唯一索引,则 InnoDB 会自动生成一个 rowid 作为隐藏的聚集索
引。
聚集索引和二级索引的具体结构如下:
聚集索引的叶子节点下挂的是这一行的数据 。
二级索引的叶子节点下挂的是该字段值对应的主键值。
接下来,我们来分析一下,当我们执行如下的 SQL 语句时,具体的查找过程是什么样子的。
具体过程如下 :
. 由于是根据 name 字段进行查询,所以先根据 name='Arm' name 字段的二级索引中进行匹配查
找。但是在二级索引中只能查找到 Arm 对应的主键值 10 . 由于查询返回的数据是 * ,所以此时,还需要根据主键值 10 ,到聚集索引中查找 10 对应的记录,最
终找到 10 对应的行 row
. 最终拿到这一行的数据,直接返回即可。
回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取
数据的方式,就称之为回表查询。
思考题:
以下两条 SQL 语句,那个执行效率高 ? 为什么 ?
A. select * from user where id = 10 ;
B. select * from user where name = 'Arm' ;
备注 : id 为主键, name 字段创建的有索引;
解答:
A 语句的执行性能要高于 B 语句。
因为 A 语句直接走聚集索引,直接返回数据。 而 B 语句需要先查询 name 字段的二级索引,然
后再查询聚集索引,也就是需要进行回表查询。
思考题:
InnoDB 主键索引的 B+tree 高度为多高呢 ? 假设 :
一行数据大小为 1k ,一页中可以存储 16 行这样的数据。 InnoDB 的指针占用 6 个字节的空
间,主键即使为 bigint ,占用字节数为 8
高度为 2
n * 8 + (n + 1) * 6 = 16*1024 , 算出 n 约为 1170
1171* 16 = 18736
也就是说,如果树的高度为 2 ,则可以存储 18000 多条记录。
高度为 3
1171 * 1171 * 16 = 21939856
也就是说,如果树的高度为 3 ,则可以存储 2200w 左右的记录。
2.4 索引语法
1). 创建索引
2). 查看索引
3). 删除索引
案例演示 :
CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (
index_col_name,... ) ;
1
SHOW INDEX FROM table_name ;
1
DROP INDEX index_name ON table_name ;
1 先来创建一张表 tb_user ,并且查询测试数据。
create table tb_user(
id int primary key auto_increment comment ' 主键 ' ,
name varchar ( 50 ) not null comment ' 用户名 ' ,
phone varchar ( 11 ) not null comment ' 手机号 ' ,
email varchar ( 100 ) comment ' 邮箱 ' ,
profession varchar ( 11 ) comment ' 专业 ' ,
age tinyint unsigned comment ' 年龄 ' ,
gender char ( 1 ) comment ' 性别 , 1: , 2: ' ,
status char ( 1 ) comment ' 状态 ' ,
createtime datetime comment ' 创建时间 '
) comment ' 系统用户表 ' ;
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 吕布 ' , '17799990000' , 'lvbu666@163.com' , ' 软件工程 ' , 23 , '1' ,
'6' , '2001-02-02 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 曹操 ' , '17799990001' , 'caocao666@qq.com' , ' 通讯工程 ' , 33 ,
'1' , '0' , '2001-03-05 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 赵云 ' , '17799990002' , '17799990@139.com' , ' 英语 ' , 34 , '1' ,
'2' , '2002-03-02 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 孙悟空 ' , '17799990003' , '17799990@sina.com' , ' 工程造价 ' , 54 ,
'1' , '0' , '2001-07-02 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 花木兰 ' , '17799990004' , '19980729@sina.com' , ' 软件工程 ' , 23 ,
'2' , '1' , '2001-04-22 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 大乔 ' , '17799990005' , 'daqiao666@sina.com' , ' 舞蹈 ' , 22 , '2' ,
'0' , '2001-02-07 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 露娜 ' , '17799990006' , 'luna_love@sina.com' , ' 应用数学 ' , 24 ,
'2' , '0' , '2001-02-08 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 程咬金 ' , '17799990007' , 'chengyaojin@163.com' , ' 化工 ' , 38 ,
'1' , '5' , '2001-05-23 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 项羽 ' , '17799990008' , 'xiaoyu666@qq.com' , ' 金属材料 ' , 43 ,
'1' , '0' , '2001-09-18 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 白起 ' , '17799990009' , 'baiqi666@sina.com' , ' 机械工程及其自动
' , 27 , '1' , '2' , '2001-08-16 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 韩信 ' , '17799990010' , 'hanxin520@163.com' , ' 无机非金属材料工
' , 27 , '1' , '0' , '2001-06-12 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 荆轲 ' , '17799990011' , 'jingke123@163.com' , ' 会计 ' , 29 , '1' ,
'0' , '2001-05-11 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 兰陵王 ' , '17799990012' , 'lanlinwang666@126.com' , ' 工程造价 ' ,
44 , '1' , '1' , '2001-04-09 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 狂铁 ' , '17799990013' , 'kuangtie@sina.com' , ' 应用数学 ' , 43 ,
'1' , '2' , '2001-04-10 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 貂蝉 ' , '17799990014' , '84958948374@qq.com' , ' 软件工程 ' , 40 ,
'2' , '3' , '2001-02-12 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 妲己 ' , '17799990015' , '2783238293@qq.com' , ' 软件工程 ' , 31 ,
'2' , '0' , '2001-01-30 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 芈月 ' , '17799990016' , 'xiaomin2001@sina.com' , ' 工业经济 ' , 35 ,
'2' , '0' , '2000-05-03 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 嬴政 ' , '17799990017' , '8839434342@qq.com' , ' 化工 ' , 38 , '1' ,
'1' , '2001-08-08 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 狄仁杰 ' , '17799990018' , 'jujiamlm8166@163.com' , ' 国际贸易 ' ,
30 , '1' , '0' , '2007-03-12 00:00:00' );
表结构中插入的数据如下:
数据准备好了之后,接下来,我们就来完成如下需求:
A. name 字段为姓名字段,该字段的值可能会重复,为该字段创建索引。
B. phone 手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 安琪拉 ' , '17799990019' , 'jdodm1h@126.com' , ' 城市规划 ' , 51 ,
'2' , '0' , '2001-08-15 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 典韦 ' , '17799990020' , 'ycaunanjian@163.com' , ' 城市规划 ' , 52 ,
'1' , '2' , '2000-04-12 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 廉颇 ' , '17799990021' , 'lianpo321@126.com' , ' 土木工程 ' , 19 ,
'1' , '3' , '2002-07-18 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 后羿 ' , '17799990022' , 'altycj2000@139.com' , ' 城市园林 ' , 20 ,
'1' , '0' , '2002-03-10 00:00:00' );
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ( ' 姜子牙 ' , '17799990023' , '37483844@qq.com' , ' 工程造价 ' , 29 ,
'1' , '4' , '2003-05-26 00:00:00' );
CREATE INDEX idx_user_name ON tb_user(name);
1 C. profession age status 创建联合索引。
D. email 建立合适的索引来提升查询效率。
完成上述的需求之后,我们再查看 tb_user 表的所有的索引数据。
2.5 SQL 性能分析
2.5.1 SQL 执行频率
MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信
息。通过如下指令,可以查看当前数据库的 INSERT UPDATE DELETE SELECT 的访问频次:
Com_delete: 删除次数
CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);
1
CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status);
1
CREATE INDEX idx_email ON tb_user(email);
1
show index from tb_user;
1
-- session 是查看当前会话 ;
-- global 是查询全局数据 ;
SHOW GLOBAL STATUS LIKE 'Com_______' ;
1
2
3 Com_insert: 插入次数
Com_select: 查询次数
Com_update: 更新次数
我们可以在当前数据库再执行几次查询操作,然后再次查看执行频次,看看 Com_select 参数会不会
变化。
通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据
库优化提供参考依据。 如果是以增删改为主,我们可以考虑不对其进行索引的优化。 如果是以
查询为主,那么就要考虑对数据库的索引进行优化了。
那么通过查询 SQL 的执行频次,我们就能够知道当前数据库到底是增删改为主,还是查询为主。 那假
如说是以查询为主,我们又该如何定位针对于那些查询语句进行优化呢? 次数我们可以借助于慢查询
日志。
接下来,我们就来介绍一下 MySQL 中的慢查询日志。
2.5.2 慢查询日志
慢查询日志记录了所有执行时间超过指定参数( long_query_time ,单位:秒,默认 10 秒)的所有
SQL 语句的日志。
MySQL 的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log
如果要开启慢查询日志,需要在 MySQL 的配置文件( /etc/my.cnf )中配置如下信息:
# 开启 MySQL 慢日志查询开关
slow_query_log = 1
# 设置慢日志的时间为 2 秒, SQL 语句执行时间超过 2 秒,就会视为慢查询,记录慢查询日志
long_query_time = 2
1
2
3
4 配置完毕之后,通过以下指令重新启动 MySQL 服务器进行测试,查看慢日志文件中记录的信息
/var/lib/mysql/localhost-slow.log
然后,再次查看开关情况,慢查询日志就已经打开了。
测试:
A. 执行如下 SQL 语句 :
B. 检查慢查询日志 :
最终我们发现,在慢查询日志中,只会记录执行时间超多我们预设时间( 2s )的 SQL ,执行较快的 SQL
是不会记录的。
那这样,通过慢查询日志,就可以定位出执行效率比较低的 SQL ,从而有针对性的进行优化。
2.5.3 profile 详情
systemctl restart mysqld
1
select * from tb_user; -- 这条 SQL 执行效率比较高 , 执行耗时 0.00sec
select count(*) from tb_sku; -- 由于 tb_sku 表中 , 预先存入了 1000w 的记录 , count 一次 , 耗时
13.35sec
1
2 show profiles 能够在做 SQL 优化时帮助我们了解时间都耗费到哪里去了。通过 have_profiling
参数,能够看到当前 MySQL 是否支持 profile 操作:
可以看到,当前 MySQL 是支持 profile 操作的,但是开关是关闭的。可以通过 set 语句在
session/global 级别开启 profiling
开关已经打开了,接下来,我们所执行的 SQL 语句,都会被 MySQL 记录,并记录执行时间消耗到哪儿去
了。 我们直接执行如下的 SQL 语句:
执行一系列的业务 SQL 的操作,然后通过如下指令查看指令的执行耗时:
查看每一条 SQL 的耗时情况 :
SELECT @@have_profiling ;
1
SET profiling = 1;
1
select * from tb_user;
select * from tb_user where id = 1 ;
select * from tb_user where name = ' 白起 ' ;
select count (*) from tb_sku;
1
2
3
4
-- 查看每一条 SQL 的耗时基本情况
show profiles;
-- 查看指定 query_id SQL 语句各个阶段的耗时情况
show profile for query query_id;
-- 查看指定 query_id SQL 语句 CPU 的使用情况
show profile cpu for query query_id;
查看指定 SQL 各个阶段的耗时情况 :
2.5.4 explain
EXPLAIN 或者 DESC 命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行
过程中表如何连接和连接的顺序。
语法 :
Explain 执行计划中各个字段的含义 :
-- 直接在 select 语句之前加上关键字 explain / desc
EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件 ;
1
2 字段
含义
id
select 查询的序列号,表示查询中执行 select 子句或者是操作表的顺序
(id 相同,执行顺序从上到下; id 不同,值越大,越先执行 )
select_type
表示 SELECT 的类型,常见的取值有 SIMPLE (简单表,即不使用表连接
或者子查询)、 PRIMARY (主查询,即外层的查询)、
UNION UNION 中的第二个或者后面的查询语句)、
SUBQUERY SELECT/WHERE 之后包含了子查询)等
type
表示连接类型,性能由好到差的连接类型为 NULL system const
eq_ref ref range index all
possible_key
显示可能应用在这张表上的索引,一个或多个。
key
实际使用的索引,如果为 NULL ,则没有使用索引。
key_len
表示索引中使用的字节数, 该值为索引字段最大可能长度,并非实际使用长
度,在不损失精确性的前提下, 长度越短越好 。
rows
MySQL 认为必须要执行查询的行数,在 innodb 引擎的表中,是一个估计值,
可能并不总是准确的。
filtered
表示返回结果的行数占需读取行数的百分比, filtered 的值越大越好。
2.6 索引使用
2.6.1 验证索引效率
在讲解索引的使用原则之前,先通过一个简单的案例,来验证一下索引,看看是否能够通过索引来提升
数据查询性能。在演示的时候,我们还是使用之前准备的一张表 tb_sku , 在这张表中准备了 1000w
的记录。
这张表中 id 为主键,有主键索引,而其他字段是没有建立索引的。 我们先来查询其中的一条记录,看
看里面的字段情况,执行如下 SQL
select * from tb_sku where id = 1\G;
1 可以看到即使有 1000w 的数据 , 根据 id 进行数据查询 , 性能依然很快,因为主键 id 是有索引的。 那么接
下来,我们再来根据 sn 字段进行查询,执行如下 SQL
我们可以看到根据 sn 字段进行查询,查询返回了一条数据,结果耗时 20.78sec ,就是因为 sn 没有索
引,而造成查询效率很低。
那么我们可以针对于 sn 字段,建立一个索引,建立了索引之后,我们再次根据 sn 进行查询,再来看一
下查询耗时情况。
创建索引:
然后再次执行相同的 SQL 语句,再次查看 SQL 的耗时。
SELECT * FROM tb_sku WHERE sn = '100000003145001' ;
1
create index idx_sku_sn on tb_sku(sn) ;
1
SELECT * FROM tb_sku WHERE sn = '100000003145001' ;
1 我们明显会看到, sn 字段建立了索引之后,查询性能大大提升。建立索引前后,查询耗时都不是一个数
量级的。
2.6.2 最左前缀法则
如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,
并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效 ( 后面的字段索引失效 )
tb_user 表为例,我们先来查看一下之前 tb_user 表所创建的索引。
tb_user 表中,有一个联合索引,这个联合索引涉及到三个字段,顺序分别为: profession
age status
对于最左前缀法则指的是,查询时,最左变的列,也就是 profession 必须存在,否则索引全部失效。
而且中间不能跳过某一列,否则该列后面的字段索引将失效。 接下来,我们来演示几组案例,看一下
具体的执行计划:
explain select * from tb_user where profession = ' 软件工程 ' and age = 31 and status
= '0';
1
explain select * from tb_user where profession = ' 软件工程 ' and age = 31;
1 以上的这三组测试中,我们发现只要联合索引最左边的字段 profession 存在,索引就会生效,只不
过索引的长度不同。 而且由以上三组测试,我们也可以推测出 profession 字段索引长度为 47 age
字段索引长度为 2 status 字段索引长度为 5
而通过上面的这两组测试,我们也可以看到索引并未生效,原因是因为不满足最左前缀法则,联合索引
最左边的列 profession 不存在。
上述的 SQL 查询时,存在 profession 字段,最左边的列是存在的,索引满足最左前缀法则的基本条
件。但是查询时,跳过了 age 这个列,所以后面的列索引是不会使用的,也就是索引部分生效,所以索
引的长度就是 47
思考题:
explain select * from tb_user where profession = ' 软件工程 ';
1
explain select * from tb_user where age = 31 and status = '0';
1
explain select * from tb_user where status = '0';
1
explain select * from tb_user where profession = ' 软件工程 ' and status = '0';
1 当执行 SQL 语句 : explain select * from tb_user where age = 31 and
status = '0' and profession = ' 软件工程 ' ; 时,是否满足最左前缀法则,走不走
上述的联合索引,索引长度?
可以看到,是完全满足最左前缀法则的,索引长度 54 ,联合索引是生效的。
注意 : 最左前缀法则中指的最左边的列,是指在查询时,联合索引的最左边的字段 ( 即是
第一个字段 ) 必须存在,与我们编写 SQL 时,条件编写的先后顺序无关。
2.6.3 范围查询
联合索引中,出现范围查询 (>,<) ,范围查询右侧的列索引失效。
当范围查询使用 > < 时,走联合索引了,但是索引的长度为 49 ,就说明范围查询右边的 status
段是没有走索引的。
当范围查询使用 >= <= 时,走联合索引了,但是索引的长度为 54 ,就说明所有的字段都是走索引
的。
所以,在业务允许的情况下,尽可能的使用类似于 >= <= 这类的范围查询,而避免使用 > <
explain select * from tb_user where profession = ' 软件工程 ' and age > 30 and status
= '0';
1
explain select * from tb_user where profession = ' 软件工程 ' and age >= 30 and
status = '0';
1 2.6.4 索引失效情况
2.6.4.1 索引列运算
不要在索引列上进行运算操作, 索引将失效。
tb_user 表中,除了前面介绍的联合索引之外,还有一个索引,是 phone 字段的单列索引。
A. 当根据 phone 字段进行等值匹配查询时 , 索引生效。
B. 当根据 phone 字段进行函数运算操作之后,索引失效。
2.6.4.2 字符串不加引号
字符串类型字段使用时,不加引号,索引将失效。
接下来,我们通过两组示例,来看看对于字符串类型的字段,加单引号与不加单引号的区别:
explain select * from tb_user where phone = '17799990015' ;
1
explain select * from tb_user where substring(phone, 10 , 2 ) = '15' ;
1 经过上面两组示例,我们会明显的发现,如果字符串不加单引号,对于查询结果,没什么影响,但是数
据库存在隐式类型转换,索引将失效。
2.6.4.3 模糊查询
如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。
接下来,我们来看一下这三条 SQL 语句的执行效果,查看一下其执行计划:
由于下面查询语句中,都是根据 profession 字段查询,符合最左前缀法则,联合索引是可以生效的,
我们主要看一下,模糊查询时, % 加在关键字之前,和加在关键字之后的影响。
explain select * from tb_user where profession = ' 软件工程 ' and age = 31 and status
= '0' ;
explain select * from tb_user where profession = ' 软件工程 ' and age = 31 and status
= 0 ;
1
2
explain select * from tb_user where phone = '17799990015';
explain select * from tb_user where phone = 17799990015;
1
2
explain select * from tb_user where profession like ' 软件 %' ;
explain select * from tb_user where profession like '% 工程 ' ;
explain select * from tb_user where profession like '% %' ;
1
2
3 经过上述的测试,我们发现,在 like 模糊查询中,在关键字后面加 % ,索引可以生效。而如果在关键字
前面加了 % ,索引将会失效。
3.6.4.4 or 连接条件
or 分割开的条件, 如果 or 前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会
被用到。
由于 age 没有索引,所以即使 id phone 有索引,索引也会失效。所以需要针对于 age 也要建立索引。
然后,我们可以对 age 字段建立索引。
建立了索引之后,我们再次执行上述的 SQL 语句,看看前后执行计划的变化。
explain select * from tb_user where id = 10 or age = 23 ;
explain select * from tb_user where phone = '17799990017' or age = 23 ;
1
2
create index idx_user_age on tb_user(age);
1 最终,我们发现,当 or 连接的条件,左右两侧字段都有索引时,索引才会生效。
3.6.4.5 数据分布影响
如果 MySQL 评估使用索引比全表更慢,则不使用索引。
经过测试我们发现,相同的 SQL 语句,只是传入的字段值不同,最终的执行计划也完全不一样,这是为
什么呢?
就是因为 MySQL 在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃
索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不
如走全表扫描来的快,此时索引就会失效。
接下来,我们再来看看 is null is not null 操作是否走索引。
执行如下两条语句 :
接下来,我们做一个操作将 profession 字段值全部更新为 null
select * from tb_user where phone >= '17799990005' ;
select * from tb_user where phone >= '17799990015' ;
1
2
explain select * from tb_user where profession is null ;
explain select * from tb_user where profession is not null ;
1
2 然后,再次执行上述的两条 SQL ,查看 SQL 语句的执行计划。
最终我们看到,一模一样的 SQL 语句,先后执行了两次,结果查询计划是不一样的,为什么会出现这种
现象,这是和数据库的数据分布有关系。查询时 MySQL 会评估,走索引快,还是全表扫描快,如果全表
扫描更快,则放弃索引走全表扫描。 因此, is null is not null 是否走索引,得具体情况具体
分析,并不是固定的。
2.6.5 SQL 提示
目前 tb_user 表的数据情况如下 :
索引情况如下 :
把上述的 idx_user_age, idx_email 这两个之前测试使用过的索引直接删除。
drop index idx_user_age on tb_user;
drop index idx_email on tb_user;
1
2 A. 执行 SQL : explain select * from tb_user where profession = ' 软件工程 ';
查询走了联合索引。
B. 执行 SQL ,创建 profession 的单列索引: create index idx_user_pro on
tb_user(profession);
C. 创建单列索引后,再次执行 A 中的 SQL 语句,查看执行计划,看看到底走哪个索引。
测试结果,我们可以看到, possible_keys idx_user_pro_age_sta,idx_user_pro 这两个
索引都可能用到,最终 MySQL 选择了 idx_user_pro_age_sta 索引。这是 MySQL 自动选择的结果。
那么,我们能不能在查询的时候,自己来指定使用哪个索引呢? 答案是肯定的,此时就可以借助于
MySQL SQL 提示来完成。 接下来,介绍一下 SQL 提示。
SQL 提示,是优化数据库的一个重要手段,简单来说,就是在 SQL 语句中加入一些人为的提示来达到优
化操作的目的。
1). use index : 建议 MySQL 使用哪一个索引完成此次查询(仅仅是建议, mysql 内部还会再次进
行评估)。
2). ignore index : 忽略指定的索引。
3). force index : 强制使用索引。
explain select * from tb_user use index(idx_user_pro) where profession = ' 软件工
' ;
1
explain select * from tb_user ignore index(idx_user_pro) where profession = ' 软件工
' ;
1 示例演示:
A. use index
B. ignore index
C. force index
2.6.6 覆盖索引
尽量使用覆盖索引,减少 select * 。 那么什么是覆盖索引呢? 覆盖索引是指 查询使用了索引,并
且需要返回的列,在该索引中已经全部能够找到 。
explain select * from tb_user force index(idx_user_pro) where profession = ' 软件工
' ;
1
explain select * from tb_user use index(idx_user_pro) where profession = ' 软件工
' ;
1
explain select * from tb_user ignore index(idx_user_pro) where profession = ' 软件工
' ;
1
explain select * from tb_user force index(idx_user_pro_age_sta) where profession =
' 软件工程 ' ;
1 Extra
含义
Using where; Using
Index
查找使用了索引,但是需要的数据都在索引列中能找到,所以不需
要回表查询数据
Using index
condition
查找使用了索引,但是需要回表查询数据
接下来,我们来看一组 SQL 的执行计划,看看执行计划的差别,然后再来具体做一个解析。
上述这几条 SQL 的执行结果为 :
从上述的执行计划我们可以看到,这四条 SQL 语句的执行计划前面所有的指标都是一样的,看不出来差
异。但是此时,我们主要关注的是后面的 Extra ,前面两天 SQL 的结果为 Using where; Using
Index ; 而后面两条 SQL 的结果为 : Using index condition
因为,在 tb_user 表中有一个联合索引 idx_user_pro_age_sta ,该索引关联了三个字段
profession age status ,而这个索引也是一个二级索引,所以叶子节点下面挂的是这一行的主
id 。 所以当我们查询返回的数据在 id profession age status 之中,则直接走二级索引
直接返回数据了。 如果超出这个范围,就需要拿到主键 id ,再去扫描聚集索引,再获取额外的数据
explain select id, profession from tb_user where profession = ' 软件工程 ' and age =
31 and status = '0' ;
explain select id,profession,age, status from tb_user where profession = ' 软件工程 '
and age = 31 and status = '0' ;
explain select id,profession,age, status, name from tb_user where profession = '
件工程 ' and age = 31 and status = '0' ;
explain select * from tb_user where profession = ' 软件工程 ' and age = 31 and status
= '0' ;
1
2
3
4 了,这个过程就是回表。 而我们如果一直使用 select * 查询返回所有字段值,很容易就会造成回表
查询(除非是根据主键查询,此时只会扫描聚集索引)。
为了大家更清楚的理解,什么是覆盖索引,什么是回表查询,我们一起再来看下面的这组 SQL 的执行过
程。
A. 表结构及索引示意图 :
id 是主键,是一个聚集索引。 name 字段建立了普通索引,是一个二级索引(辅助索引)。
B. 执行 SQL : select * from tb_user where id = 2;
根据 id 查询,直接走聚集索引查询,一次索引扫描,直接返回数据,性能高。
C. 执行 SQL selet id,name from tb_user where name = 'Arm'; 虽然是根据 name 字段查询,查询二级索引,但是由于查询返回在字段为 id name ,在 name 的二级索
引中,这两个值都是可以直接获取到的,因为覆盖索引,所以不需要回表查询,性能高。
D. 执行 SQL selet id,name,gender from tb_user where name = 'Arm';
由于在 name 的二级索引中,不包含 gender ,所以,需要两次索引扫描,也就是需要回表查询,性能相
对较差一点。
思考题:
一张表 , 有四个字段 (id, username, password, status), 由于数据量大 , 需要对
以下 SQL 语句进行优化 , 该如何进行才是最优方案 :
select id,username,password from tb_user where username =
'itcast';
答案 : 针对于 username, password 建立联合索引 , sql : create index
idx_user_name_pass on tb_user(username,password);
这样可以避免上述的 SQL 语句,在查询的过程中,出现回表查询。 2.6.7 前缀索引
当字段类型为字符串( varchar text longtext 等)时,有时候需要索引很长的字符串,这会让
索引变得很大,查询时,浪费大量的磁盘 IO , 影响查询效率。此时可以只将字符串的一部分前缀,建
立索引,这样可以大大节约索引空间,从而提高索引效率。
1). 语法
示例 :
tb_user 表的 email 字段,建立长度为 5 的前缀索引。
2). 前缀长度
可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,
索引选择性越高则查询效率越高, 唯一索引的选择性是 1 ,这是最好的索引选择性,性能也是最好的。
3). 前缀索引的查询流程
create index idx_xxxx on table_name(column(n)) ;
1
create index idx_email_5 on tb_user(email( 5 ));
1
select count ( distinct email) / count (*) from tb_user ;
select count ( distinct substring(email, 1 , 5 )) / count (*) from tb_user ;
1
2 2.6.8 单列索引与联合索引
单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。
我们先来看看 tb_user 表中目前的索引情况 :
在查询出来的索引中,既有单列索引,又有联合索引。
接下来,我们来执行一条 SQL 语句,看看其执行计划:
通过上述执行计划我们可以看出来,在 and 连接的两个字段 phone name 上都是有单列索引的,但是
最终 mysql 只会选择一个索引,也就是说,只能走一个字段的索引,此时是会回表查询的。
紧接着,我们再来创建一个 phone name 字段的联合索引来查询一下执行计划。 此时,查询时,就走了联合索引,而在联合索引中包含 phone name 的信息,在叶子节点下挂的是对
应的主键 id ,所以查询是无需回表查询的。
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,
而非单列索引。
如果查询使用的是联合索引,具体的结构示意图如下:
2.7 索引设计原则
1). 针对于数据量较大,且查询比较频繁的表建立索引。
2). 针对于常作为查询条件( where )、排序( order by )、分组( group by )操作的字段建立索
引。
3). 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
4). 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
5). 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,
避免回表,提高查询效率。
6). 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增
删改的效率。
create unique index idx_user_phone_name on tb_user(phone,name);
1 7). 如果索引列不能存储 NULL 值,请在创建表时使用 NOT NULL 约束它。当优化器知道每列是否包含
NULL 值时,它可以更好地确定哪个索引最有效地用于查询。
3. SQL 优化
3.1 插入数据
3.1.1 insert
如果我们需要一次性往数据库表中插入多条记录,可以从以下三个方面进行优化。
1). 优化方案一
批量插入数据
2). 优化方案二
手动控制事务
3). 优化方案三
insert into tb_test values ( 1 , 'tom' );
insert into tb_test values ( 2 , 'cat' );
insert into tb_test values ( 3 , 'jerry' );
.....
1
2
3
4
Insert into tb_test values ( 1 , 'Tom' ),( 2 , 'Cat' ),( 3 , 'Jerry' );
1
start transaction;
insert into tb_test values ( 1 , 'Tom' ),( 2 , 'Cat' ),( 3 , 'Jerry' );
insert into tb_test values ( 4 , 'Tom' ),( 5 , 'Cat' ),( 6 , 'Jerry' );
insert into tb_test values ( 7 , 'Tom' ),( 8 , 'Cat' ),( 9 , 'Jerry' );
commit;
1
2
3
4
5 主键顺序插入,性能要高于乱序插入。
3.1.2 大批量插入数据
如果一次性需要插入大批量数据 ( 比如 : 几百万的记录 ) ,使用 insert 语句插入性能较低,此时可以使
MySQL 数据库提供的 load 指令进行插入。操作如下:
可以执行如下指令,将数据脚本文件中的数据加载到表结构中:
主键顺序插入性能高于乱序插入
示例演示 :
A. 创建表结构
主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3
主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89
1
2
-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p
-- 设置全局参数 local_infile 1 ,开启从本地加载文件导入数据的开关
set global local_infile = 1 ;
-- 执行 load 指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table tb_user fields
terminated by ',' lines terminated by '\n' ;
B. 设置参数
C. load 加载数据
我们看到,插入 100w 的记录, 17s 就完成了,性能很好。
load 时,主键顺序插入性能高于乱序插入
3.2 主键优化
CREATE TABLE `tb_user` (
`id` INT ( 11 ) NOT NULL AUTO_INCREMENT,
`username` VARCHAR ( 50 ) NOT NULL ,
`password` VARCHAR ( 50 ) NOT NULL ,
`name` VARCHAR ( 20 ) NOT NULL ,
`birthday` DATE DEFAULT NULL ,
`sex` CHAR ( 1 ) DEFAULT NULL ,
PRIMARY KEY (`id`),
UNIQUE KEY `unique_user_username` (`username`)
) ENGINE=INNODB DEFAULT CHARSET=utf8 ;
-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p
-- 设置全局参数 local_infile 1 ,开启从本地加载文件导入数据的开关
set global local_infile = 1 ;
load data local infile '/root/load_user_100w_sort.sql' into table tb_user
fields terminated by ',' lines terminated by '\n' ;
1 在上一小节,我们提到,主键顺序插入的性能是要高于乱序插入的。 这一小节,就来介绍一下具体的
原因,然后再分析一下主键又该如何设计。
1). 数据组织方式
InnoDB 存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表
(index organized table IOT)
行数据,都是存储在聚集索引的叶子节点上的。而我们之前也讲解过 InnoDB 的逻辑结构图:
InnoDB 引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认 16K
那也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行 row 在该页存储不小,将会存储
到下一个页中,页与页之间会通过指针连接。
2). 页分裂
页可以为空,也可以填充一半,也可以填充 100% 。每个页包含了 2-N 行数据 ( 如果一行数据过大,会行
溢出 ) ,根据主键排列。
A. 主键顺序插入效果
. 从磁盘中申请页, 主键顺序插入 . 第一个页没有满,继续往第一页插入
. 当第一个也写满之后,再写入第二个页,页与页之间会通过指针连接
. 当第二页写满了,再往第三页写入
B. 主键乱序插入效果
. 加入 1#,2# 页都已经写满了,存放了如图所示的数据
. 此时再插入 id 50 的记录,我们来看看会发生什么现象
会再次开启一个页,写入新的页中吗? 不会。因为,索引结构的叶子节点是有顺序的。按照顺序,应该存储在 47 之后。
但是 47 所在的 1# 页,已经写满了,存储不了 50 对应的数据了。 那么此时会开辟一个新的页 3#
但是并不会直接将 50 存入 3# 页,而是会将 1# 页后一半的数据,移动到 3# 页,然后在 3# 页,插入 50
移动数据,并插入 id 50 的数据之后,那么此时,这三个页之间的数据顺序是有问题的。 1# 的下一个
页,应该是 3# 3# 的下一个页是 2# 。 所以,此时,需要重新设置链表指针。
上述的这种现象,称之为 " 页分裂 " ,是比较耗费性能的操作。
3). 页合并
目前表中已有数据的索引结构 ( 叶子节点 ) 如下: 当我们对已有数据进行删除时,具体的效果如下 :
当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记( flaged )为删除并且它的空间
变得允许被其他记录声明使用。
当我们继续删除 2# 的数据记录
当页中删除的记录达到 MERGE_THRESHOLD (默认为页的 50% ), InnoDB 会开始寻找最靠近的页(前
或后)看看是否可以将两个页合并以优化空间使用。
删除数据,并将页合并之后,再次插入新的数据 21 ,则直接插入 3#
这个里面所发生的合并页的这个现象,就称之为 " 页合并 "
知识小贴士:
MERGE_THRESHOLD :合并页的阈值,可以自己设置,在创建表或者创建索引时指定。
4). 索引设计原则
满足业务需求的情况下,尽量降低主键的长度。
插入数据时,尽量选择顺序插入,选择使用 AUTO_INCREMENT 自增主键。 尽量不要使用 UUID 做主键或者是其他自然主键,如身份证号。
业务操作时,避免对主键的修改。
3.3 order by 优化
MySQL 的排序,有两种方式:
Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区 sort
buffer 中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。
Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index ,不需要
额外排序,操作效率高。
对于以上的两种排序方式, Using index 的性能高,而 Using filesort 的性能低,我们在优化排序
操作时,尽量要优化为 Using index
接下来,我们来做一个测试:
A. 数据准备
把之前测试时,为 tb_user 表所建立的部分索引直接删除掉 B. 执行排序 SQL
由于 age, phone 都没有索引,所以此时再排序时,出现 Using filesort , 排序性能较低。
C. 创建索引
D. 创建索引后,根据 age, phone 进行升序排序
drop index idx_user_phone on tb_user;
drop index idx_user_phone_name on tb_user;
drop index idx_user_name on tb_user;
1
2
3
explain select id,age,phone from tb_user order by age ;
1
explain select id,age,phone from tb_user order by age, phone ;
1
-- 创建索引
create index idx_user_age_phone_aa on tb_user(age,phone);
1
2
explain select id,age,phone from tb_user order by age;
1 建立索引之后,再次进行排序查询,就由原来的 Using filesort , 变为了 Using index ,性能
就是比较高的了。
E. 创建索引后,根据 age, phone 进行降序排序
也出现 Using index , 但是此时 Extra 中出现了 Backward index scan ,这个代表反向扫描索
引,因为在 MySQL 中我们创建的索引,默认索引的叶子节点是从小到大排序的,而此时我们查询排序
时,是从大到小,所以,在扫描时,就是反向扫描,就会出现 Backward index scan 。 在
MySQL8 版本中,支持降序索引,我们也可以创建降序索引。
F. 根据 phone age 进行升序排序, phone 在前, age 在后。
排序时 , 也需要满足最左前缀法则 , 否则也会出现 filesort 。因为在创建索引的时候, age 是第一个
字段, phone 是第二个字段,所以排序时,也就该按照这个顺序来,否则就会出现 Using
filesort
F. 根据 age, phone 进行降序一个升序,一个降序
explain select id,age,phone from tb_user order by age , phone;
1
explain select id,age,phone from tb_user order by age desc , phone desc ;
1
explain select id,age,phone from tb_user order by phone , age;
1 因为创建索引时,如果未指定顺序,默认都是按照升序排序的,而查询时,一个升序,一个降序,此时
就会出现 Using filesort
为了解决上述的问题,我们可以创建一个索引,这个联合索引中 age 升序排序, phone 倒序排序。
G. 创建联合索引 (age 升序排序, phone 倒序排序 )
H. 然后再次执行如下 SQL
升序 / 降序联合索引结构图示 :
explain select id,age,phone from tb_user order by age asc , phone desc ;
1
create index idx_user_age_phone_ad on tb_user(age asc ,phone desc );
1
explain select id,age,phone from tb_user order by age asc , phone desc ;
1 由上述的测试 , 我们得出 order by 优化原则 :
A. 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
B. 尽量使用覆盖索引。
C. 多字段排序 , 一个升序一个降序,此时需要注意联合索引在创建时的规则( ASC/DESC )。
D. 如果不可避免的出现 filesort ,大数据量排序时,可以适当增大排序缓冲区大小
sort_buffer_size( 默认 256k)
3.4 group by 优化
分组操作,我们主要来看看索引对于分组操作的影响。
首先我们先将 tb_user 表的索引全部删除掉 。
接下来,在没有索引的情况下,执行如下 SQL ,查询执行计划:
然后,我们在针对于 profession age status 创建一个联合索引。
drop index idx_user_pro_age_sta on tb_user;
drop index idx_email_5 on tb_user;
drop index idx_user_age_phone_aa on tb_user;
drop index idx_user_age_phone_ad on tb_user;
1
2
3
4
explain select profession , count (*) from tb_user group by profession ;
1 紧接着,再执行前面相同的 SQL 查看执行计划。
再执行如下的分组查询 SQL ,查看执行计划:
我们发现,如果仅仅根据 age 分组,就会出现 Using temporary ;而如果是 根据
profession,age 两个字段同时分组,则不会出现 Using temporary 。原因是因为对于分组操作,
在联合索引中,也是符合最左前缀法则的。
所以,在分组操作中,我们需要通过以下两点进行优化,以提升性能:
A. 在分组操作时,可以通过索引来提高效率。
B. 分组操作时,索引的使用也是满足最左前缀法则的。
3.5 limit 优化
在数据量比较大时,如果进行 limit 分页查询,在查询时,越往后,分页查询效率越低。
我们一起来看看执行 limit 分页查询耗时对比:
create index idx_user_pro_age_sta on tb_user(profession , age , status);
1
explain select profession , count (*) from tb_user group by profession ;
1 通过测试我们会看到,越往后,分页查询效率越低,这就是分页查询的问题所在。
因为,当在进行分页查询时,如果执行 limit 2000000,10 ,此时需要 MySQL 排序前 2000010
录,仅仅返回 2000000 - 2000010 的记录,其他记录丢弃,查询排序的代价非常大 。
优化思路 : 一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查
询形式进行优化。
3.6 count 优化
3.6.1 概述
在之前的测试中,我们发现,如果数据量很大,在执行 count 操作时,是非常耗时的。
MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个
数,效率很高; 但是如果是带条件的 count MyISAM 也慢。
InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出
来,然后累积计数。
如果说要大幅度提升 InnoDB 表的 count 效率,主要的优化思路:自己计数 ( 可以借助于 redis 这样的数
据库进行 , 但是如果是带条件的 count 又比较麻烦了 )
3.6.2 count 用法
count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是
NULL ,累计值就加 1 ,否则不加,最后返回累计值。
用法: count
* )、 count (主键)、 count (字段)、 count (数字)
explain select * from tb_sku t , ( select id from tb_sku order by id
limit 2000000 , 10 ) a where t .id = a .id ;
1
select count(*) from tb_user ;
1 count
含义
count(
)
InnoDB 引擎会遍历整张表,把每一行的 主键 id 值都取出来,返回给服务层。
服务层拿到主键后,直接按行进行累加 ( 主键不可能为 null)
count(
)
没有 not null 约束 : InnoDB 引擎会遍历整张表把每一行的字段值都取出
来,返回给服务层,服务层判断是否为 null ,不为 null ,计数累加。
not null 约束: InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返
回给服务层,直接按行进行累加。
count(
)
InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字 “1”
进去,直接按行进行累加。
count(*)
InnoDB 引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接
按行进行累加。
按照效率排序的话, count( 字段 ) < count( 主键 id) < count(1) ≈ count(*) ,所以尽
量使用 count(*)
3.7 update 优化
我们主要需要注意一下 update 语句执行时的注意事项。
当我们在执行删除的 SQL 语句时,会锁定 id 1 这一行的数据,然后事务提交之后,行锁释放。
但是当我们在执行如下 SQL 时。
当我们开启多个事务,在执行上述的 SQL 时,我们发现行锁升级为了表锁。 导致该 update 语句的性能
大大降低。
update course set name = 'javaEE' where id = 1 ;
1
update course set name = 'SpringBoot' where name = 'PHP' ;
1 InnoDB 的行锁是针对索引加的锁,不是针对记录加的锁 , 并且该索引不能失效,否则会从行锁
升级为表锁 。
4. 视图 / 存储过程 / 触发器
4.1 视图
4.1.1 介绍
视图( View )是一种虚拟存在的表。视图中的数据并不在数据库中实际存在,行和列数据来自定义视
图的查询中使用的表,并且是在使用视图时动态生成的。
通俗的讲,视图只保存了查询的 SQL 逻辑,不保存查询结果。所以我们在创建视图的时候,主要的工作
就落在创建这条 SQL 查询语句上。
4.1.2 语法
1). 创建
2). 查询
3). 修改
4). 删除
CREATE [ OR REPLACE] VIEW 视图名称 [( 列名列表 )] AS SELECT 语句 [ WITH [
CASCADED | LOCAL ] CHECK OPTION ]
1
查看创建视图语句: SHOW CREATE VIEW 视图名称 ;
查看视图数据: SELECT * FROM 视图名称 ...... ;
1
2
方式一: CREATE [ OR REPLACE] VIEW 视图名称 [( 列名列表 )] AS SELECT 语句 [ WITH
[ CASCADED | LOCAL ] CHECK OPTION ]
方式二: ALTER VIEW 视图名称 [( 列名列表 )] AS SELECT 语句 [ WITH [ CASCADED |
LOCAL ] CHECK OPTION ]
1
2
DROP VIEW [IF EXISTS] 视图名称 [, 视图名称 ] ...
1 演示示例:
上述我们演示了,视图应该如何创建、查询、修改、删除,那么我们能不能通过视图来插入、更新数据
呢? 接下来,做一个测试。
执行上述的 SQL ,我们会发现, id 6 17 的数据都是可以成功插入的。 但是我们执行查询,查询出
来的数据,却没有 id 17 的记录。
-- 创建视图
create or replace view stu_v_1 as select id,name from student where id <= 10 ;
-- 查询视图
show create view stu_v_1;
select * from stu_v_1;
select * from stu_v_1 where id < 3 ;
-- 修改视图
create or replace view stu_v_1 as select id,name,no from student where id <= 10 ;
alter view stu_v_1 as select id,name from student where id <= 10 ;
-- 删除视图
drop view if exists stu_v_1;
create or replace view stu_v_1 as select id,name from student where id <= 10 ;
select * from stu_v_1;
insert into stu_v_1 values ( 6 , 'Tom' );
insert into stu_v_1 values ( 17 , 'Tom22' );
因为我们在创建视图的时候,指定的条件为 id<=10, id 17 的数据,是不符合条件的,所以没有查
询出来,但是这条数据确实是已经成功的插入到了基表中。
如果我们定义视图时,如果指定了条件,然后我们在插入、修改、删除数据时,是否可以做到必须满足
条件才能操作,否则不能够操作呢? 答案是可以的,这就需要借助于视图的检查选项了。
4.1.3 检查选项
当使用 WITH CHECK OPTION 子句创建视图时, MySQL 会通过视图检查正在更改的每个行,例如 插
入,更新,删除,以使其符合视图的定义。 MySQL 允许基于另一个视图创建视图,它还会检查依赖视
图中的规则以保持一致性。为了确定检查的范围, mysql 提供了两个选项: CASCADED LOCAL
,默认值为 CASCADED
1). CASCADED
级联。
比如, v2 视图是基于 v1 视图的,如果在 v2 视图创建的时候指定了检查选项为 cascaded ,但是 v1 视图
创建时未指定检查选项。 则在执行检查时,不仅会检查 v2 ,还会级联检查 v2 的关联视图 v1
2). LOCAL
本地。
比如, v2 视图是基于 v1 视图的,如果在 v2 视图创建的时候指定了检查选项为 local ,但是 v1 视图创
建时未指定检查选项。 则在执行检查时,知会检查 v2 ,不会检查 v2 的关联视图 v1 4.1.4 视图的更新
要使视图可更新,视图中的行与基础表中的行之间必须存在一对一的关系。如果视图包含以下任何一
项,则该视图不可更新:
A. 聚合函数或窗口函数( SUM() MIN() MAX() COUNT() 等)
B. DISTINCT
C. GROUP BY
D. HAVING
E. UNION 或者 UNION ALL
示例演示 :
上述的视图中,就只有一个单行单列的数据,如果我们对这个视图进行更新或插入的,将会报错。
4.1.5 视图作用
1). 简单
视图不仅可以简化用户对数据的理解,也可以简化他们的操作。那些被经常使用的查询可以被定义为视
图,从而使得用户不必为以后的操作每次指定全部的条件。
2). 安全
数据库可以授权,但不能授权到数据库特定行和特定的列上。通过视图用户只能查询和修改他们所能见
到的数据
create view stu_v_count as select count (*) from student;
1
insert into stu_v_count values(10);
1 3). 数据独立
视图可帮助用户屏蔽真实表结构变化带来的影响。
4.1.6 案例
1). 为了保证数据库表的安全性,开发人员在操作 tb_user 表时,只能看到的用户的基本字段,屏蔽
手机号和邮箱两个字段。
2). 查询每个学生所选修的课程(三张表联查),这个功能在很多的业务中都有使用到,为了简化操
作,定义一个视图。
4.2 存储过程
4.2.1 介绍
存储过程是事先经过编译并存储在数据库中的一段 SQL 语句的集合,调用存储过程可以简化应用开发
人员的很多工作,减少数据在数据库和应用服务器之间的传输,对于提高数据处理的效率是有好处的。
存储过程思想上很简单,就是数据库 SQL 语言层面的代码封装与重用。
特点 :
create view tb_user_view as select id,name,profession,age,gender,status,createtime
from tb_user;
select * from tb_user_view;
1
2
3
create view tb_stu_course_view as select s .name student_name , s .no student_no ,
c .name course_name from student s, student_course sc , course c where s .id =
sc .studentid and sc .courseid = c .id ;
select * from tb_stu_course_view;
1
2
3 封装,复用 -----------------------> 可以把某一业务 SQL 封装在存储过程中,需要用到
的时候直接调用即可。
可以接收参数,也可以返回数据 --------> 再存储过程中,可以传递参数,也可以接收返回
值。
减少网络交互,效率提升 -------------> 如果涉及到多条 SQL ,每执行一次都是一次网络传
输。 而如果封装在存储过程中,我们只需要网络交互一次可能就可以了。
4.2.2 基本语法
1). 创建
2). 调用
3). 查看
4). 删除
注意 :
在命令行中,执行创建存储过程的 SQL 时,需要通过关键字 delimiter 指定 SQL 语句的
结束符。
CREATE PROCEDURE 存储过程名称 ([ 参数列表 ])
BEGIN
-- SQL 语句
END ;
1
2
3
4
CALL 名称 ([ 参数 ]);
1
SELECT * FROM INFORMATION_SCHEMA .ROUTINES WHERE ROUTINE_SCHEMA = 'xxx' ; -- 查询指
定数据库的存储过程及状态信息
SHOW CREATE PROCEDURE 存储过程名称 ; -- 查询某个存储过程的定义
1
2
DROP PROCEDURE [ IF EXISTS ] 存储过程名称 ;
1 演示示例 :
4.2.3 变量
MySQL 中变量分为三种类型 : 系统变量、用户定义变量、局部变量。
4.2.3.1 系统变量
系统变量 是 MySQL 服务器提供,不是用户定义的,属于服务器层面。分为全局变量( GLOBAL )、会话
变量( SESSION )。
1). 查看系统变量
2). 设置系统变量
-- 存储过程基本语法
-- 创建
create procedure p1()
begin
select count (*) from student;
end;
-- 调用
call p1();
-- 查看
select * from information_schema .ROUTINES where ROUTINE_SCHEMA = 'itcast' ;
show create procedure p1;
-- 删除
drop procedure if exists p1;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
SHOW [ SESSION | GLOBAL ] VARIABLES ; -- 查看所有系统变量
SHOW [ SESSION | GLOBAL ] VARIABLES LIKE '......' ; -- 可以通过 LIKE 模糊匹配方
式查找变量
SELECT @@[SESSION | GLOBAL] 系统变量名 ; -- 查看指定变量的值
1
2
3 注意 :
如果没有指定 SESSION/GLOBAL ,默认是 SESSION ,会话变量。
A. 全局变量 (GLOBAL): 全局变量针对于所有的会话。
B. 会话变量 (SESSION): 会话变量针对于单个会话,在另外一个会话窗口就不生效了。
演示示例 :
SET [ SESSION | GLOBAL ] 系统变量名 = ;
SET @@[SESSION | GLOBAL] 系统变量名 = ;
1
2
mysql 服务重新启动之后,所设置的全局参数会失效,要想不失效,可以在 /etc/my.cnf 中配置。
1
-- 查看系统变量
show session variables ;
show session variables like 'auto%' ;
show global variables like 'auto%' ;
select @@global .autocommit ;
select @@session .autocommit ;
-- 设置系统变量
set session autocommit = 1 ;
insert into course(id, name) VALUES ( 6 , 'ES' );
set global autocommit = 0 ;
select @@global .autocommit ;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 4.2.3.2 用户定义变量
用户定义变量 是用户根据需要自己定义的变量,用户变量不用提前声明,在用的时候直接用 "@ 变量
" 使用就可以。其作用域为当前连接。
1). 赋值
方式一 :
赋值时,可以使用 = ,也可以使用 :=
方式二 :
2). 使用
注意 : 用户定义的变量无需对其进行声明或初始化,只不过获取到的值为 NULL
演示示例 :
SET @var_name = expr [, @var_name = expr] ... ;
SET @var_name := expr [, @var_name := expr] ... ;
1
2
SELECT @var_name := expr [, @var_name := expr] ... ;
SELECT 字段名 INTO @var_name FROM 表名 ;
1
2
SELECT @var_name ;
1
-- 赋值
set @myname = 'itcast' ;
set @myage := 10 ;
set @mygender := ' ' ,@myhobby := 'java' ;
select @mycolor := 'red' ;
select count (*) into @mycount from tb_user;
-- 使用
select @myname,@myage,@mygender,@myhobby;
select @mycolor , @mycount;
11
12 4.2.3.3 局部变量
局部变量 是根据需要定义的在局部生效的变量,访问之前,需要 DECLARE 声明。可用作存储过程内的
局部变量和输入参数,局部变量的范围是在其内声明的 BEGIN ... END 块。
1). 声明
变量类型就是数据库字段类型: INT BIGINT CHAR VARCHAR DATE TIME 等。
2). 赋值
演示示例 :
4.2.4 if
1). 介绍
select @abc;
13
14
DECLARE 变量名 变量类型 [DEFAULT ... ] ;
1
SET 变量名 = ;
SET 变量名 := ;
SELECT 字段名 INTO 变量名 FROM 表名 ... ;
1
2
3
-- 声明局部变量 - declare
-- 赋值
create procedure p2()
begin
declare stu_count int default 0 ;
select count (*) into stu_count from student;
select stu_count;
end;
call p2();
1
2
3
4
5
6
7
8
9
10 if 用于做条件判断,具体的语法结构为:
if 条件判断的结构中, ELSE IF 结构可以有多个,也可以没有。 ELSE 结构可以有,也可以没有。
2). 案例
根据定义的分数 score 变量,判定当前分数对应的分数等级。
score >= 85 分,等级为优秀。
score >= 60 分 且 score < 85 分,等级为及格。
score < 60 分,等级为不及格。
IF 条件 1 THEN
.....
ELSEIF 条件 2 THEN -- 可选
.....
ELSE -- 可选
.....
END IF;
1
2
3
4
5
6
7
create procedure p3()
begin
declare score int default 58 ;
declare result varchar ( 10 );
if score >= 85 then
set result := ' 优秀 ' ;
elseif score >= 60 then
set result := ' 及格 ' ;
else
set result := ' 不及格 ' ;
end if;
select result;
end;
call p3();
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 类型
含义
备注
IN
该类参数作为输入,也就是需要调用时传入值
默认
OUT
该类参数作为输出,也就是该参数可以作为返回值
INOUT
既可以作为输入参数,也可以作为输出参数
上述的需求我们虽然已经实现了,但是也存在一些问题,比如: score 分数我们是在存储过程中定义
死的,而且最终计算出来的分数等级,我们也仅仅是最终查询展示出来而已。
那么我们能不能,把 score 分数动态的传递进来,计算出来的分数等级是否可以作为返回值返回呢?
答案是肯定的,我们可以通过接下来所讲解的 参数 来解决上述的问题。
4.2.5 参数
1). 介绍
参数的类型,主要分为以下三种: IN OUT INOUT 。 具体的含义如下:
用法:
2). 案例一
根据传入参数 score ,判定当前分数对应的分数等级,并返回。
score >= 85 分,等级为优秀。
score >= 60 分 且 score < 85 分,等级为及格。
score < 60 分,等级为不及格。
CREATE PROCEDURE 存储过程名称 ([ IN /OUT/INOUT 参数名 参数类型 ])
BEGIN
-- SQL 语句
END ;
1
2
3
4
create procedure p4( in score int , out result varchar ( 10 ))
begin
if score >= 85 then
set result := ' 优秀 ' ;
elseif score >= 60 then
1
2
3
4
5 3). 案例二
传入 200 分制的分数,进行换算,换算成百分制,然后 返回
4.2.6 case
1). 介绍
case 结构及作用,和我们在基础篇中所讲解的流程控制函数很类似。有两种语法格式:
语法 1
set result := ' 及格 ' ;
else
set result := ' 不及格 ' ;
end if;
end;
-- 定义用户变量 @result 来接收返回的数据 , 用户变量可以不用声明
call p4( 18 , @result);
select @result;
6
7
8
9
10
11
12
13
14
15
create procedure p5(inout score double )
begin
set score := score * 0.5 ;
end;
set @score = 198 ;
call p5(@score);
select @score;
1
2
3
4
5
6
7
8
9 语法 2
2). 案例
根据传入的月份,判定月份所属的季节(要求采用 case 结构)。
1-3 月份,为第一季度
4-6 月份,为第二季度
7-9 月份,为第三季度
10-12 月份,为第四季度
-- 含义: 当 case_value 的值为 when_value1 时,执行 statement_list1 ,当值为 when_value2 时,
执行 statement_list2 , 否则就执行 statement_list
CASE case_value
WHEN when_value1 THEN statement_list1
[ WHEN when_value2 THEN statement_list2] ...
[ ELSE statement_list ]
END CASE;
1
2
3
4
5
6
-- 含义: 当条件 search_condition1 成立时,执行 statement_list1 ,当条件 search_condition2
立时,执行 statement_list2 , 否则就执行 statement_list
CASE
WHEN search_condition1 THEN statement_list1
[WHEN search_condition2 THEN statement_list2] ...
[ELSE statement_list]
END CASE;
1
2
3
4
5
6
create procedure p6( in month int )
begin
declare result varchar ( 10 );
case
when month >= 1 and month <= 3 then
set result := ' 第一季度 ' ;
when month >= 4 and month <= 6 then
set result := ' 第二季度 ' ;
when month >= 7 and month <= 9 then
set result := ' 第三季度 ' ;
1
2
3
4
5
6
7
8
9
10 注意:如果判定条件有多个,多个条件之间,可以使用 and or 进行连接。
4.2.7 while
1). 介绍
while 循环是有条件的循环控制语句。满足条件后,再执行循环体中的 SQL 语句。具体语法为:
2). 案例
计算从 1 累加到 n 的值, n 为传入的参数值。
when month >= 10 and month <= 12 then
set result := ' 第四季度 ' ;
else
set result := ' 非法参数 ' ;
end case ;
select concat( ' 您输入的月份为 : ' ,month, ', 所属的季度为 : ' ,result);
end;
call p6( 16 );
11
12
13
14
15
16
17
18
19
20
-- 先判定条件,如果条件为 true ,则执行逻辑,否则,不执行逻辑
WHILE 条件 DO
SQL 逻辑 ...
END WHILE;
1
2
3
4
-- A. 定义局部变量 , 记录累加之后的值 ;
-- B. 每循环一次 , 就会对 n 进行减 1 , 如果 n 减到 0, 则退出循环
create procedure p7( in n int )
begin
declare total int default 0 ;
while n> 0 do
1
2
3
4
5
6
7
8 4.2.8 repeat
1). 介绍
repeat 是有条件的循环控制语句 , 当满足 until 声明的条件的时候,则退出循环 。具体语法为:
2). 案例
计算从 1 累加到 n 的值, n 为传入的参数值。 ( 使用 repeat 实现 )
set total := total + n;
set n := n - 1 ;
end while;
select total;
end;
call p7( 100 );
9
10
11
12
13
14
15
16
-- 先执行一次逻辑,然后判定 UNTIL 条件是否满足,如果满足,则退出。如果不满足,则继续下一次循环
REPEAT
SQL 逻辑 ...
UNTIL 条件
END REPEAT;
1
2
3
4
5
-- A. 定义局部变量 , 记录累加之后的值 ;
-- B. 每循环一次 , 就会对 n 进行 -1 , 如果 n 减到 0, 则退出循环
create procedure p8( in n int )
begin
declare total int default 0 ;
repeat
set total := total + n;
set n := n - 1 ;
until n <= 0
end repeat;
select total;
1
2
3
4
5
6
7
8
9
10
11
12
13 4.2.9 loop
1). 介绍
LOOP 实现简单的循环,如果不在 SQL 逻辑中增加退出循环的条件,可以用其来实现简单的死循环。
LOOP 可以配合一下两个语句使用:
LEAVE :配合循环使用,退出循环。
ITERATE :必须用在循环中,作用是跳过当前循环剩下的语句,直接进入下一次循环。
上述语法中出现的 begin_label end_label label 指的都是我们所自定义的标记。
2). 案例一
计算从 1 累加到 n 的值, n 为传入的参数值。
end;
call p8( 10 );
call p8( 100 );
14
15
16
17
[begin_label:] LOOP
SQL 逻辑 ...
END LOOP [end_label];
1
2
3
LEAVE label; -- 退出指定标记的循环体
ITERATE label; -- 直接进入下一次循环
1
2
-- A. 定义局部变量 , 记录累加之后的值 ;
-- B. 每循环一次 , 就会对 n 进行 -1 , 如果 n 减到 0, 则退出循环 ----> leave xx
create procedure p9( in n int )
begin
declare total int default 0 ;
sum:loop
if n<= 0 then
leave sum;
1
2
3
4
5
6
7
8
9
10 3). 案例二
计算从 1 n 之间的偶数累加的值, n 为传入的参数值。
end if;
set total := total + n;
set n := n - 1 ;
end loop sum;
select total;
end;
call p9( 100 );
11
12
13
14
15
16
17
18
19
20
-- A. 定义局部变量 , 记录累加之后的值 ;
-- B. 每循环一次 , 就会对 n 进行 -1 , 如果 n 减到 0, 则退出循环 ----> leave xx
-- C. 如果当次累加的数据是奇数 , 则直接进入下一次循环 . --------> iterate xx
create procedure p10( in n int )
begin
declare total int default 0 ;
sum:loop
if n<= 0 then
leave sum;
end if;
if n% 2 = 1 then
set n := n - 1 ;
iterate sum;
end if;
set total := total + n;
set n := n - 1 ;
end loop sum;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 4.2.10 游标
1). 介绍
游标( CURSOR )是用来存储查询结果集的数据类型 , 在存储过程和函数中可以使用游标对结果集进
行循环的处理。游标的使用包括游标的声明、 OPEN FETCH CLOSE ,其语法分别如下。
A. 声明游标
B. 打开游标
C. 获取游标记录
D. 关闭游标
2). 案例
根据传入的参数 uage ,来查询用户表 tb_user 中,所有的用户年龄小于等于 uage 的用户姓名
name )和专业( profession ),并将用户的姓名和专业插入到所创建的一张新表
(id,name,profession) 中。
select total;
end;
call p10( 100 );
23
24
25
26
27
DECLARE 游标名称 CURSOR FOR 查询语句 ;
1
OPEN 游标名称 ;
1
FETCH 游标名称 INTO 变量 [, 变量 ] ;
1
CLOSE 游标名称 ;
1
-- 逻辑 :
-- A. 声明游标 , 存储查询结果集
-- B. 准备 : 创建表结构
-- C. 开启游标
-- D. 获取游标中的记录
-- E. 插入数据到新表中
1
2
3
4
5
6 上述的存储过程,最终我们在调用的过程中,会报错,之所以报错是因为上面的 while 循环中,并没有
退出条件。当游标的数据集获取完毕之后,再次获取数据,就会报错,从而终止了程序的执行。
但是此时, tb_user_pro 表结构及其数据都已经插入成功了,我们可以直接刷新表结构,检查表结构
中的数据。
-- F. 关闭游标
create procedure p11( in uage int )
begin
declare uname varchar ( 100 );
declare upro varchar ( 100 );
declare u_cursor cursor for select name,profession from tb_user where age <=
uage;
drop table if exists tb_user_pro;
create table if not exists tb_user_pro(
id int primary key auto_increment,
name varchar ( 100 ),
profession varchar ( 100 )
);
open u_cursor;
while true do
fetch u_cursor into uname,upro;
insert into tb_user_pro values ( null , uname, upro);
end while;
close u_cursor;
end;
call p11( 30 );
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 上述的功能,虽然我们实现了,但是逻辑并不完善,而且程序执行完毕,获取不到数据,数据库还报
错。 接下来,我们就需要来完成这个存储过程,并且解决这个问题。
要想解决这个问题,就需要通过 MySQL 中提供的 条件处理程序 Handler 来解决。
4.2.11 条件处理程序
1). 介绍
条件处理程序( Handler )可以用来定义在流程控制结构执行过程中遇到问题时相应的处理步骤。具体
语法为: 2). 案例
我们继续来完成在上一小节提出的这个需求,并解决其中的问题。
根据传入的参数 uage ,来查询用户表 tb_user 中,所有的用户年龄小于等于 uage 的用户姓名
name )和专业( profession ),并将用户的姓名和专业插入到所创建的一张新表
(id,name,profession) 中。
A. 通过 SQLSTATE 指定具体的状态码
DECLARE handler_action HANDLER FOR condition_value [, condition_value]
... statement ;
handler_action 的取值:
CONTINUE: 继续执行当前程序
EXIT: 终止执行当前程序
condition_value 的取值:
SQLSTATE sqlstate_value: 状态码,如 02000
SQLWARNING: 所有以 01 开头的 SQLSTATE 代码的简写
NOT FOUND: 所有以 02 开头的 SQLSTATE 代码的简写
SQLEXCEPTION: 所有没有被 SQLWARNING NOT FOUND 捕获的 SQLSTATE 代码的简写
1
2
3
4
5
6
7
8
9
10
11
12
-- 逻辑 :
-- A. 声明游标 , 存储查询结果集
-- B. 准备 : 创建表结构
-- C. 开启游标
-- D. 获取游标中的记录
-- E. 插入数据到新表中
-- F. 关闭游标
create procedure p11( in uage int )
begin
declare uname varchar ( 100 );
declare upro varchar ( 100 );
declare u_cursor cursor for select name,profession from tb_user where age <=
uage;
1
2
3
4
5
6
7
8
9
10
11
12
13 B. 通过 SQLSTATE 的代码简写方式 NOT FOUND
02 开头的状态码,代码简写为 NOT FOUND
-- 声明条件处理程序 : 当 SQL 语句执行抛出的状态码为 02000 时,将关闭游标 u_cursor ,并退出
declare exit handler for SQLSTATE '02000' close u_cursor;
drop table if exists tb_user_pro;
create table if not exists tb_user_pro(
id int primary key auto_increment,
name varchar ( 100 ),
profession varchar ( 100 )
);
open u_cursor;
while true do
fetch u_cursor into uname,upro;
insert into tb_user_pro values ( null , uname, upro);
end while;
close u_cursor;
end;
call p11( 30 );
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
create procedure p12( in uage int )
begin
declare uname varchar ( 100 );
declare upro varchar ( 100 );
declare u_cursor cursor for select name,profession from tb_user where age <=
uage;
-- 声明条件处理程序 : 当 SQL 语句执行抛出的状态码为 02 开头时,将关闭游标 u_cursor ,并退出
declare exit handler for not found close u_cursor;
drop table if exists tb_user_pro;
create table if not exists tb_user_pro(
id int primary key auto_increment,
1
2
3
4
5
6
7
8
9
10
11 具体的错误状态码,可以参考官方文档:
https://dev.mysql.com/doc/refman/8.0/en/declare-handler.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
4.3 存储函数
1). 介绍
存储函数是有返回值的存储过程,存储函数的参数只能是 IN 类型的。具体语法如下:
characteristic 说明:
DETERMINISTIC :相同的输入参数总是产生相同的结果
name varchar ( 100 ),
profession varchar ( 100 )
);
open u_cursor;
while true do
fetch u_cursor into uname,upro;
insert into tb_user_pro values ( null , uname, upro);
end while;
close u_cursor;
end;
call p12( 30 );
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
CREATE FUNCTION 存储函数名称 ([ 参数列表 ])
RETURNS type [characteristic ...]
BEGIN
-- SQL 语句
RETURN ...;
END ;
1
2
3
4
5
6 NO SQL :不包含 SQL 语句。
READS SQL DATA :包含读取数据的语句,但不包含写入数据的语句。
2). 案例
计算从 1 累加到 n 的值, n 为传入的参数值。
mysql8.0 版本中 binlog 默认是开启的,一旦开启了, mysql 就要求在定义存储过程时,需要指定
characteristic 特性,否则就会报如下错误:
4.4 触发器
4.4.1 介绍
触发器是与表有关的数据库对象,指在 insert/update/delete 之前 (BEFORE) 或之后 (AFTER) ,触
发并执行触发器中定义的 SQL 语句集合。触发器的这种特性可以协助应用在数据库端确保数据的完整性
, 日志记录 , 数据校验等操作 。
使用别名 OLD NEW 来引用触发器中发生变化的记录内容,这与其他的数据库是相似的。现在触发器还
只支持行级触发,不支持语句级触发。
create function fun1(n int )
returns int deterministic
begin
declare total int default 0 ;
while n> 0 do
set total := total + n;
set n := n - 1 ;
end while;
return total;
end;
select fun1( 50 );
1
2
3
4
5
6
7
8
9
10
11
12
13
14 触发器类型
NEW OLD
INSERT 型触发器
NEW 表示将要或者已经新增的数据
UPDATE 型触发器
OLD 表示修改之前的数据 , NEW 表示将要或已经修改后的数据
DELETE 型触发器
OLD 表示将要或者已经删除的数据
4.4.2 语法
1). 创建
2). 查看
3). 删除
4.4.3 案例
通过触发器记录 tb_user 表的数据变更日志,将变更日志插入到日志表 user_logs , 包含增加 ,
修改 , 删除 ;
表结构准备 :
CREATE TRIGGER trigger_name
BEFORE/AFTER INSERT /UPDATE/DELETE
ON tbl_name FOR EACH ROW -- 行级触发器
BEGIN
trigger_stmt ;
END;
1
2
3
4
5
6
SHOW TRIGGERS ;
1
DROP TRIGGER [schema_name.]trigger_name ; -- 如果没有指定 schema_name ,默认为当前数
据库 。
1 A. 插入数据触发器
测试 :
测试完毕之后,检查日志表中的数据是否可以正常插入,以及插入数据的正确性。
B. 修改数据触发器
-- 准备工作 : 日志表 user_logs
create table user_logs(
id int ( 11 ) not null auto_increment,
operation varchar ( 20 ) not null comment ' 操作类型 , insert/update/delete' ,
operate_time datetime not null comment ' 操作时间 ' ,
operate_id int ( 11 ) not null comment ' 操作的 ID' ,
operate_params varchar ( 500 ) comment ' 操作参数 ' ,
primary key(`id`)
)engine=innodb default charset=utf8;
1
2
3
4
5
6
7
8
9
create trigger tb_user_insert_trigger
after insert on tb_user for each row
begin
insert into user_logs(id, operation, operate_time, operate_id, operate_params)
VALUES
( null , 'insert' , now(), new .id , concat( ' 插入的数据内容为 :
id=' ,new .id , ',name=' ,new .name , ', phone=' , NEW .phone , ', email=' , NEW .email , ',
profession=' , NEW .profession ));
end;
1
2
3
4
5
6
-- 查看
show triggers ;
-- 插入数据到 tb_user
insert into tb_user(id, name, phone, email, profession, age, gender, status,
createtime) VALUES ( 26 , ' 三皇子 ' , '18809091212' , 'erhuangzi@163.com' , ' 软件工
' , 23 , '1' , '1' ,now());
1
2
3
4
5 测试 :
测试完毕之后,检查日志表中的数据是否可以正常插入,以及插入数据的正确性。
C. 删除数据触发器
create trigger tb_user_update_trigger
after update on tb_user for each row
begin
insert into user_logs(id, operation, operate_time, operate_id, operate_params)
VALUES
( null , 'update' , now(), new .id ,
concat( ' 更新之前的数据 : id=' ,old .id , ',name=' ,old .name , ', phone=' ,
old .phone , ', email=' , old .email , ', profession=' , old .profession ,
' | 更新之后的数据 : id=' ,new .id , ',name=' ,new .name , ', phone=' ,
NEW .phone , ', email=' , NEW .email , ', profession=' , NEW .profession ));
end;
1
2
3
4
5
6
7
8
-- 查看
show triggers ;
-- 更新
update tb_user set profession = ' 会计 ' where id = 23 ;
update tb_user set profession = ' 会计 ' where id <= 5 ;
1
2
3
4
5
6
create trigger tb_user_delete_trigger
after delete on tb_user for each row
begin
insert into user_logs(id, operation, operate_time, operate_id, operate_params)
VALUES
( null , 'delete' , now(), old .id ,
concat( ' 删除之前的数据 : id=' ,old .id , ',name=' ,old .name , ', phone=' ,
old .phone , ', email=' , old .email , ', profession=' , old .profession ));
end;
1
2
3
4
5
6
7 测试 :
测试完毕之后,检查日志表中的数据是否可以正常插入,以及插入数据的正确性。
5.
5.1 概述
锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源( CPU
RAM I/O )的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有
效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个
角度来说,锁对数据库而言显得尤其重要,也更加复杂。
MySQL 中的锁,按照锁的粒度分,分为以下三类:
全局锁:锁定数据库中的所有表。
表级锁:每次操作锁住整张表。
行级锁:每次操作锁住对应的行数据。
5.2 全局锁
5.2.1 介绍
全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的 DML 的写语句, DDL
句,已经更新操作的事务提交语句都将被阻塞。
其典型的使用场景是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整
性。
为什么全库逻辑备份,就需要加全就锁呢?
-- 查看
show triggers ;
-- 删除数据
delete from tb_user where id = 26 ;
1
2
3
4
5 A. 我们一起先来分析一下不加全局锁,可能存在的问题。
假设在数据库中存在这样三张表 : tb_stock 库存表, tb_order 订单表, tb_orderlog 订单日
志表。
在进行数据备份时,先备份了 tb_stock 库存表。
然后接下来,在业务系统中,执行了下单操作,扣减库存,生成订单(更新 tb_stock 表,插入
tb_order 表)。
然后再执行备份 tb_order 表的逻辑。
业务中执行插入订单日志操作。
最后,又备份了 tb_orderlog 表。
此时备份出来的数据,是存在问题的。因为备份出来的数据, tb_stock 表与 tb_order 表的数据不一
( 有最新操作的订单信息 , 但是库存数没减 )
那如何来规避这种问题呢 ? 此时就可以借助于 MySQL 的全局锁来解决。
B. 再来分析一下加了全局锁后的情况
对数据库进行进行逻辑备份之前,先对整个数据库加上全局锁,一旦加了全局锁之后,其他的 DDL
DML 全部都处于阻塞状态,但是可以执行 DQL 语句,也就是处于只读状态,而数据备份就是查询操作。
那么数据在进行逻辑备份的过程中,数据库中的数据就是不会发生变化的,这样就保证了数据的一致性
和完整性。 5.2.2 语法
1). 加全局锁
2). 数据备份
数据备份的相关指令 , 在后面 MySQL 管理章节 , 还会详细讲解 .
3). 释放锁
5.2.3 特点
数据库中加全局锁,是一个比较重的操作,存在以下问题:
如果在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆。
如果在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志( binlog ),会导
致主从延迟。
InnoDB 引擎中,我们可以在备份时加上参数 --single-transaction 参数来完成不加锁的一致
性数据备份。
5.3 表级锁
5.3.1 介绍
表级锁,每次操作锁住整张表。锁定粒度大,发生锁冲突的概率最高,并发度最低。应用在 MyISAM
InnoDB BDB 等存储引擎中。
对于表级锁,主要分为以下三类:
表锁
元数据锁( meta data lock MDL
意向锁
flush tables with read lock ;
1
mysqldump -uroot –p1234 itcast > itcast .sql
1
unlock tables ;
1
mysqldump --single-transaction -uroot –p123456 itcast > itcast.sql
1 5.3.2 表锁
对于表锁,分为两类:
表共享读锁( read lock
表独占写锁( write lock
语法:
加锁: lock tables 表名 ... read/write
释放锁: unlock tables / 客户端断开连接 。
特点 :
A. 读锁
左侧为客户端一,对指定表加了读锁,不会影响右侧客户端二的读,但是会阻塞右侧客户端的写。
测试 :
B. 写锁 左侧为客户端一,对指定表加了写锁,会阻塞右侧客户端的读和写。
测试 :
结论 : 读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其他客户端的读,又会阻塞
其他客户端的写。
5.3.3 元数据锁
meta data lock , 元数据锁,简写 MDL
MDL 加锁过程是系统自动控制,无需显式使用,在访问一张表的时候会自动加上。 MDL 锁主要作用是维
护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。 为了避免 DML
DDL 冲突,保证读写的正确性。
这里的元数据,大家可以简单理解为就是一张表的表结构。 也就是说,某一张表涉及到未提交的事务
时,是不能够修改这张表的表结构的。
MySQL5.5 中引入了 MDL ,当对一张表进行增删改查的时候,加 MDL 读锁 ( 共享 ) ;当对表结构进行变
更操作的时候,加 MDL 写锁 ( 排他 )
常见的 SQL 操作时,所添加的元数据锁: 对应 SQL
锁类型
说明
lock tables xxx read /
write
SHARED_READ_ONLY /
SHARED_NO_READ_WRITE
select select ...
lock in share mode
SHARED_READ
SHARED_READ
SHARED_WRITE 兼容,与
EXCLUSIVE 互斥
insert update
delete select ... for
update
SHARED_WRITE
SHARED_READ
SHARED_WRITE 兼容,与
EXCLUSIVE 互斥
alter table ...
EXCLUSIVE
与其他的 MDL 都互斥
演示:
当执行 SELECT INSERT UPDATE DELETE 等语句时,添加的是元数据共享锁( SHARED_READ /
SHARED_WRITE ),之间是兼容的。
当执行 SELECT 语句时,添加的是元数据共享锁( SHARED_READ ),会阻塞元数据排他锁
EXCLUSIVE ),之间是互斥的。
我们可以通过下面的 SQL ,来查看数据库中的元数据锁的情况: 我们在操作过程中,可以通过上述的 SQL 语句,来查看元数据锁的加锁情况。
5.3.4 意向锁
1). 介绍
为了避免 DML 在执行时,加的行锁与表锁的冲突,在 InnoDB 中引入了意向锁,使得表锁不用检查每行
数据是否加锁,使用意向锁来减少表锁的检查。
假如没有意向锁,客户端一对表加了行锁后,客户端二如何给表加表锁呢,来通过示意图简单分析一
下:
首先客户端一,开启一个事务,然后执行 DML 操作,在执行 DML 语句时,会对涉及到的行加行锁。
当客户端二,想对这张表加表锁时,会检查当前表是否有对应的行锁,如果没有,则添加表锁,此时就
会从第一行数据,检查到最后一行数据,效率较低。
select object_type,object_schema,object_name,lock_type,lock_duration from
performance_schema .metadata_locks ;
1 有了意向锁之后 :
客户端一,在执行 DML 操作时,会对涉及的行加行锁,同时也会对该表加上意向锁。
而其他客户端,在对这张表加表锁的时候,会根据该表上所加的意向锁来判定是否可以成功加表锁,而
不用逐行判断行锁情况了。
2). 分类 意向共享锁 (IS): 由语句 select ... lock in share mode 添加 。 与 表锁共享锁
(read) 兼容,与表锁排他锁 (write) 互斥。
意向排他锁 (IX): insert update delete select...for update 添加 。与表锁共
享锁 (read) 及排他锁 (write) 都互斥,意向锁之间不会互斥。
一旦事务提交了,意向共享锁、意向排他锁,都会自动释放。
可以通过以下 SQL ,查看意向锁及行锁的加锁情况:
演示:
A. 意向共享锁与表读锁是兼容的
B. 意向排他锁与表读锁、写锁都是互斥的
5.4 行级锁
5.4.1 介绍
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from
performance_schema .data_locks ;
1 行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在
InnoDB 存储引擎中。
InnoDB 的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的
锁。对于行级锁,主要分为以下三类:
行锁( Record Lock ):锁定单个行记录的锁,防止其他事务对此行进行 update delete 。在
RC RR 隔离级别下都支持。
间隙锁( Gap Lock ):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事
务在这个间隙进行 insert ,产生幻读。在 RR 隔离级别下都支持。
临键锁( Next-Key Lock ):行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙 Gap
RR 隔离级别下支持。
5.4.2 行锁
1). 介绍
InnoDB 实现了以下两种类型的行锁:
共享锁(
S ):允许一个事务去读一行,阻止其他事务获得相同数据集的排它锁。
排他锁(
X ):允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他
锁。
两种行锁的兼容情况如下 : SQL
行锁类型
说明
INSERT ...
排他锁
自动加锁
UPDATE ...
排他锁
自动加锁
DELETE ...
排他锁
自动加锁
SELECT (正常)
不加任何
SELECT ... LOCK IN SHARE
MODE
共享锁
需要手动在 SELECT 之后加 LOCK IN SHARE
MODE
SELECT ... FOR UPDATE
排他锁
需要手动在 SELECT 之后加 FOR UPDATE
常见的 SQL 语句,在执行时,所加的行锁如下:
2). 演示
默认情况下, InnoDB REPEATABLE READ 事务隔离级别运行, InnoDB 使用 next-key 锁进行搜
索和索引扫描,以防止幻读。
针对唯一索引进行检索时,对已存在的记录进行等值匹配时,将会自动优化为行锁。
InnoDB 的行锁是针对于索引加的锁,不通过索引条件检索数据,那么 InnoDB 将对表中的所有记
录加锁,此时 就会升级为表锁。
可以通过以下 SQL ,查看意向锁及行锁的加锁情况:
示例演示
数据准备 :
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from
performance_schema .data_locks ;
1 演示行锁的时候,我们就通过上面这张表来演示一下。
A. 普通的 select 语句,执行时,不会加锁。
B. select...lock in share mode ,加共享锁,共享锁与共享锁之间兼容。
CREATE TABLE `stu` (
`id` int NOT NULL PRIMARY KEY AUTO_INCREMENT,
`name` varchar ( 255 ) DEFAULT NULL ,
`age` int NOT NULL
) ENGINE = InnoDB CHARACTER SET = utf8mb4;
INSERT INTO `stu` VALUES ( 1 , 'tom' , 1 );
INSERT INTO `stu` VALUES ( 3 , 'cat' , 3 );
INSERT INTO `stu` VALUES ( 8 , 'rose' , 8 );
INSERT INTO `stu` VALUES ( 11 , 'jetty' , 11 );
INSERT INTO `stu` VALUES ( 19 , 'lily' , 19 );
INSERT INTO `stu` VALUES ( 25 , 'luci' , 25 );
1
2
3
4
5
6
7
8
9
10
11
12 共享锁与排他锁之间互斥。
客户端一获取的是 id 1 这行的共享锁,客户端二是可以获取 id 3 这行的排它锁的,因为不是同一行
数据。 而如果客户端二想获取 id 1 这行的排他锁,会处于阻塞状态,以为共享锁与排他锁之间互
斥。
C. 排它锁与排他锁之间互斥 当客户端一,执行 update 语句,会为 id 1 的记录加排他锁; 客户端二,如果也执行 update 语句更
id 1 的数据,也要为 id 1 的数据加排他锁,但是客户端二会处于阻塞状态,因为排他锁之间是互
斥的。 直到客户端一,把事务提交了,才会把这一行的行锁释放,此时客户端二,解除阻塞。
D. 无索引行锁升级为表锁
stu 表中数据如下 :
我们在两个客户端中执行如下操作 :
在客户端一中,开启事务,并执行 update 语句,更新 name Lily 的数据,也就是 id 19 的记录 。
然后在客户端二中更新 id 3 的记录,却不能直接执行,会处于阻塞状态,为什么呢?
原因就是因为此时,客户端一,根据 name 字段进行更新时, name 字段是没有索引的,如果没有索引,
此时行锁会升级为表锁 ( 因为行锁是对索引项加的锁,而 name 没有索引 )
接下来,我们再针对 name 字段建立索引,索引建立之后,再次做一个测试: 此时我们可以看到,客户端一,开启事务,然后依然是根据 name 进行更新。而客户端二,在更新 id 3
的数据时,更新成功,并未进入阻塞状态。 这样就说明,我们根据索引字段进行更新操作,就可以避
免行锁升级为表锁的情况。
5.4.3 间隙锁 & 临键锁
默认情况下, InnoDB REPEATABLE READ 事务隔离级别运行, InnoDB 使用 next-key 锁进行搜
索和索引扫描,以防止幻读。
索引上的等值查询 ( 唯一索引 ) ,给不存在的记录加锁时 , 优化为间隙锁 。
索引上的等值查询 ( 非唯一普通索引 ) ,向右遍历时最后一个值不满足查询需求时, next-key
lock 退化为间隙锁。
索引上的范围查询 ( 唯一索引 )-- 会访问到不满足条件的第一个值为止。
注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会
阻止另一个事务在同一间隙上采用间隙锁。
示例演示
A. 索引上的等值查询 ( 唯一索引 ) ,给不存在的记录加锁时 , 优化为间隙锁 。 B. 索引上的等值查询 ( 非唯一普通索引 ) ,向右遍历时最后一个值不满足查询需求时, next-key
lock 退化为间隙锁。
介绍分析一下:
我们知道 InnoDB B+ 树索引,叶子节点是有序的双向链表。 假如,我们要根据这个二级索引查询值
18 的数据,并加上共享锁,我们是只锁定 18 这一行就可以了吗? 并不是,因为是非唯一索引,这个
结构中可能有多个 18 的存在,所以,在加锁时会继续往后找,找到一个不满足条件的值(当前案例中也
就是 29 )。此时会对 18 加临键锁,并对 29 之前的间隙加锁。
C. 索引上的范围查询 ( 唯一索引 )-- 会访问到不满足条件的第一个值为止。 查询的条件为 id>=19 ,并添加共享锁。 此时我们可以根据数据库表中现有的数据,将数据分为三个部
分:
[19]
(19,25]
(25,+∞]
所以数据库数据在加锁是,就是将 19 加了行锁, 25 的临键锁(包含 25 25 之前的间隙),正无穷的临
键锁 ( 正无穷及之前的间隙 )
6. InnoDB 引擎
6.1 逻辑存储结构
InnoDB 的逻辑存储结构如下图所示 :
1). 表空间 表空间是 InnoDB 存储引擎逻辑结构的最高层, 如果用户启用了参数 innodb_file_per_table(
8.0 版本中默认开启 ) ,则每张表都会有一个表空间( xxx.ibd ),一个 mysql 实例可以对应多个表空
间,用于存储记录、索引等数据。
2).
段,分为数据段( Leaf node segment )、索引段( Non-leaf node segment )、回滚段
Rollback segment ), InnoDB 是索引组织表,数据段就是 B+ 树的叶子节点, 索引段即为 B+ 树的
非叶子节点。段用来管理多个 Extent (区)。
3).
区,表空间的单元结构,每个区的大小为 1M 。 默认情况下, InnoDB 存储引擎页大小为 16K , 即一
个区中一共有 64 个连续的页。
4).
页,是 InnoDB 存储引擎磁盘管理的最小单元,每个页的大小默认为 16KB 。为了保证页的连续性,
InnoDB 存储引擎每次从磁盘申请 4-5 个区。
5).
行, InnoDB 存储引擎数据是按行进行存放的。
在行中,默认有两个隐藏字段:
Trx_id :每次对某条记录进行改动时,都会把对应的事务 id 赋值给 trx_id 隐藏列。
Roll_pointer :每次对某条引记录进行改动时,都会把旧的版本写入到 undo 日志中,然后这个
隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。
6.2 架构
6.2.1 概述
MySQL5.5 版本开始,默认使用 InnoDB 存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发
中使用非常广泛。下面是 InnoDB 架构图,左侧为内存结构,右侧为磁盘结构。 6.2.2 内存结构
在左侧的内存结构中,主要分为这么四大块儿: Buffer Pool Change Buffer Adaptive
Hash Index Log Buffer 。 接下来介绍一下这四个部分。 1). Buffer Pool
InnoDB 存储引擎基于磁盘文件存储,访问物理硬盘和在内存中进行访问,速度相差很大,为了尽可能
弥补这两者之间的 I/O 效率的差值,就需要把经常使用的数据加载到缓冲池中,避免每次访问都进行磁
I/O
InnoDB 的缓冲池中不仅缓存了索引页和数据页,还包含了 undo 页、插入缓存、自适应哈希索引以及
InnoDB 的锁信息等等。
缓冲池 Buffer Pool ,是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增
删改查操作时,先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存),然后再以一定频
率刷新到磁盘,从而减少磁盘 IO ,加快处理速度。
缓冲池以 Page 页为单位,底层采用链表数据结构管理 Page 。根据状态,将 Page 分为三种类型:
• free page :空闲 page ,未被使用。
• clean page :被使用 page ,数据没有被修改过。
• dirty page :脏页,被使用 page ,数据被修改过,也中数据与磁盘的数据产生了不一致。
在专用服务器上,通常将多达 80 %的物理内存分配给缓冲池 。参数设置: show variables
like 'innodb_buffer_pool_size';
2). Change Buffer
Change Buffer ,更改缓冲区(针对于非唯一二级索引页),在执行 DML 语句时,如果这些数据 Page
没有在 Buffer Pool 中,不会直接操作磁盘,而会将数据变更存在更改缓冲区 Change Buffer
中,在未来数据被读取时,再将数据合并恢复到 Buffer Pool 中,再将合并后的数据刷新到磁盘中。
Change Buffer 的意义是什么呢 ?
先来看一幅图,这个是二级索引的结构图: 与聚集索引不同,二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引。同样,删除和更新
可能会影响索引树中不相邻的二级索引页,如果每一次都操作磁盘,会造成大量的磁盘 IO 。有了
ChangeBuffer 之后,我们可以在缓冲池中进行合并处理,减少磁盘 IO
3). Adaptive Hash Index
自适应 hash 索引,用于优化对 Buffer Pool 数据的查询。 MySQL innoDB 引擎中虽然没有直接支持
hash 索引,但是给我们提供了一个功能就是这个自适应 hash 索引。因为前面我们讲到过, hash 索引在
进行等值匹配时,一般性能是要高于 B+ 树的,因为 hash 索引一般只需要一次 IO 即可,而 B+ 树,可能需
要几次匹配,所以 hash 索引的效率要高,但是 hash 索引又不适合做范围查询、模糊匹配等。
InnoDB 存储引擎会监控对表上各索引页的查询,如果观察到在特定的条件下 hash 索引可以提升速度,
则建立 hash 索引,称之为自适应 hash 索引。
自适应哈希索引,无需人工干预,是系统根据情况自动完成。
参数: adaptive_hash_index
4). Log Buffer
Log Buffer :日志缓冲区,用来保存要写入到磁盘中的 log 日志数据( redo log undo log ),
默认大小为 16MB ,日志缓冲区的日志会定期刷新到磁盘中。如果需要更新、插入或删除许多行的事
务,增加日志缓冲区的大小可以节省磁盘 I/O
参数 :
innodb_log_buffer_size :缓冲区大小
innodb_flush_log_at_trx_commit :日志刷新到磁盘时机,取值主要包含以下三个:
1: 日志在每次事务提交时写入并刷新到磁盘,默认值。
0: 每秒将日志写入并刷新到磁盘一次。 2: 日志在每次事务提交后写入,并每秒刷新到磁盘一次。
6.2.3 磁盘结构
接下来,再来看看 InnoDB 体系结构的右边部分,也就是磁盘结构:
1). System Tablespace
系统表空间是更改缓冲区的存储区域。如果表是在系统表空间而不是每个表文件或通用表空间中创建
的,它也可能包含表和索引数据。 ( MySQL5.x 版本中还包含 InnoDB 数据字典、 undolog )
参数: innodb_data_file_path
系统表空间,默认的文件名叫 ibdata1
2). File-Per-Table Tablespaces 如果开启了 innodb_file_per_table 开关 ,则每个表的文件表空间包含单个 InnoDB 表的数据和索
引 ,并存储在文件系统上的单个数据文件中。
开关参数: innodb_file_per_table ,该参数默认开启。
那也就是说,我们没创建一个表,都会产生一个表空间文件,如图:
3). General Tablespaces
通用表空间,需要通过 CREATE TABLESPACE 语法创建通用表空间,在创建表时,可以指定该表空
间。
A. 创建表空间
B. 创建表时指定表空间
4). Undo Tablespaces
撤销表空间, MySQL 实例在初始化时会自动创建两个默认的 undo 表空间(初始大小 16M ),用于存储
undo log 日志。
5). Temporary Tablespaces
InnoDB 使用会话临时表空间和全局临时表空间。存储用户创建的临时表等数据。
6). Doublewrite Buffer Files
CREATE TABLESPACE ts_name ADD DATAFILE 'file_name' ENGINE = engine_name;
1
CREATE TABLE xxx ... TABLESPACE ts_name;
1 双写缓冲区, innoDB 引擎将数据页从 Buffer Pool 刷新到磁盘前,先将数据页写入双写缓冲区文件
中,便于系统异常时恢复数据。
7). Redo Log
重做日志,是用来实现事务的持久性。该日志文件由两部分组成:重做日志缓冲( redo log
buffer )以及重做日志文件( redo log , 前者是在内存中,后者在磁盘中。当事务提交之后会把所
有修改信息都会存到该日志中 , 用于在刷新脏页到磁盘时 , 发生错误时 , 进行数据恢复使用。
以循环方式写入重做日志文件,涉及两个文件:
前面我们介绍了 InnoDB 的内存结构,以及磁盘结构,那么内存中我们所更新的数据,又是如何到磁盘
中的呢? 此时,就涉及到一组后台线程,接下来,就来介绍一些 InnoDB 中涉及到的后台线程。
6.2.4 后台线程 线程类型
默认个数
职责
Read thread
4
负责读操作
Write thread
4
负责写操作
Log thread
1
负责将日志缓冲区刷新到磁盘
Insert buffer thread
1
负责将写缓冲区内容刷新到磁盘
InnoDB 的后台线程中,分为 4 类,分别是: Master Thread IO Thread Purge Thread
Page Cleaner Thread
1). Master Thread
核心后台线程,负责调度其他线程,还负责将缓冲池中的数据异步刷新到磁盘中 , 保持数据的一致性,
还包括脏页的刷新、合并插入缓存、 undo 页的回收 。
2). IO Thread
InnoDB 存储引擎中大量使用了 AIO 来处理 IO 请求 , 这样可以极大地提高数据库的性能,而 IO
Thread 主要负责这些 IO 请求的回调。
我们可以通过以下的这条指令,查看到 InnoDB 的状态信息,其中就包含 IO Thread 信息。 3). Purge Thread
主要用于回收事务已经提交了的 undo log ,在事务提交之后, undo log 可能不用了,就用它来回
收。
4). Page Cleaner Thread
协助 Master Thread 刷新脏页到磁盘的线程,它可以减轻 Master Thread 的工作压力,减少阻
塞。
6.3 事务原理
6.3.1 事务基础
1). 事务
事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系
统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。
2). 特性
show engine innodb status \G;
1 原子性( Atomicity ):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。
一致性( Consistency ):事务完成时,必须使所有的数据都保持一致状态。
隔离性( Isolation ):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环
境下运行。
持久性( Durability ):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。
那实际上,我们研究事务的原理,就是研究 MySQL InnoDB 引擎是如何保证事务的这四大特性的。
而对于这四大特性,实际上分为两个部分。 其中的原子性、一致性、持久化,实际上是由 InnoDB 中的
两份日志来保证的,一份是 redo log 日志,一份是 undo log 日志。 而持久性是通过数据库的锁,
加上 MVCC 来保证的。
我们在讲解事务原理的时候,主要就是来研究一下 redolog undolog 以及 MVCC
6.3.2 redo log
重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。
该日志文件由两部分组成:重做日志缓冲( redo log buffer )以及重做日志文件( redo log
file , 前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中 ,
于在刷新脏页到磁盘 , 发生错误时 , 进行数据恢复使用。
如果没有 redolog ,可能会存在什么问题的? 我们一起来分析一下。 我们知道,在 InnoDB 引擎中的内存结构中,主要的内存区域就是缓冲池,在缓冲池中缓存了很多的数
据页。 当我们在一个事务中,执行多个增删改的操作时, InnoDB 引擎会先操作缓冲池中的数据,如果
缓冲区没有对应的数据,会通过后台线程将磁盘中的数据加载出来,存放在缓冲区中,然后将缓冲池中
的数据修改,修改后的数据页我们称为脏页。 而脏页则会在一定的时机,通过后台线程刷新到磁盘
中,从而保证缓冲区与磁盘的数据一致。 而缓冲区的脏页数据并不是实时刷新的,而是一段时间之后
将缓冲区的数据刷新到磁盘中,假如刷新到磁盘的过程出错了,而提示给用户事务提交成功,而数据却
没有持久化下来,这就出现问题了,没有保证事务的持久性。
那么,如何解决上述的问题呢? 在 InnoDB 中提供了一份日志 redo log ,接下来我们再来分析一
下,通过 redolog 如何解决这个问题。
有了 redolog 之后,当对缓冲区的数据进行增删改之后,会首先将操作的数据页的变化,记录在 redo
log buffer 中。在事务提交时,会将 redo log buffer 中的数据刷新到 redo log 磁盘文件中。
过一段时间之后,如果刷新缓冲区的脏页到磁盘时,发生错误,此时就可以借助于 redo log 进行数据
恢复,这样就保证了事务的持久性。 而如果脏页成功刷新到磁盘 或 或者涉及到的数据已经落盘,此
redolog 就没有作用了,就可以删除了,所以存在的两个 redolog 文件是循环写的。 那为什么每一次提交事务,要刷新 redo log 到磁盘中呢,而不是直接将 buffer pool 中的脏页刷新
到磁盘呢 ?
因为在业务操作中,我们操作数据一般都是随机读写磁盘的,而不是顺序读写磁盘。 而 redo log
往磁盘文件中写入数据,由于是日志文件,所以都是顺序写的。顺序写的效率,要远大于随机写。 这
种先写日志的方式,称之为 WAL Write-Ahead Logging )。
6.3.3 undo log
回滚日志,用于记录数据被修改前的信息 , 作用包含两个 : 提供回滚 ( 保证事务的原子性 )
MVCC( 多版本并发控制 )
undo log redo log 记录物理日志不一样,它是逻辑日志。可以认为当 delete 一条记录时, undo
log 中会记录一条对应的 insert 记录,反之亦然,当 update 一条记录时,它记录一条对应相反的
update 记录。当执行 rollback 时,就可以从 undo log 中的逻辑记录读取到相应的内容并进行回滚。
Undo log 销毁: undo log 在事务执行时产生,事务提交时,并不会立即删除 undo log ,因为这些
日志可能还用于 MVCC
Undo log 存储: undo log 采用段的方式进行管理和记录,存放在前面介绍的 rollback segment
回滚段中,内部包含 1024 undo log segment
6.4 MVCC
6.4.1 基本概念
1). 当前读
读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加
锁。对于我们日常的操作,如: select ... lock in share mode( 共享锁 ) select ...
for update update insert delete( 排他锁 ) 都是一种当前读。
测试: 在测试中我们可以看到,即使是在默认的 RR 隔离级别下,事务 A 中依然可以读取到事务 B 最新提交的内
容,因为在查询语句后面加上了 lock in share mode 共享锁,此时是当前读操作。当然,当我们
加排他锁的时候,也是当前读操作。
2). 快照读
简单的 select (不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,
不加锁,是非阻塞读。
• Read Committed :每次 select ,都生成一个快照读。
• Repeatable Read :开启事务后第一个 select 语句才是快照读的地方。
• Serializable :快照读会退化为当前读。
测试 : 隐藏字段
含义
DB_TRX_ID
最近修改事务 ID ,记录插入这条记录或最后一次修改该记录的事务 ID
DB_ROLL_PTR
回滚指针,指向这条记录的上一个版本,用于配合 undo log ,指向上一个版
本。
DB_ROW_ID
隐藏主键,如果表结构没有指定主键,将会生成该隐藏字段。
在测试中 , 我们看到即使事务 B 提交了数据 , 事务 A 中也查询不到。 原因就是因为普通的 select 是快照
读,而在当前默认的 RR 隔离级别下,开启事务后第一个 select 语句才是快照读的地方,后面执行相同
select 语句都是从快照中获取数据,可能不是当前的最新数据,这样也就保证了可重复读。
3). MVCC
全称 Multi-Version Concurrency Control ,多版本并发控制。指维护一个数据的多个版本,
使得读写操作没有冲突,快照读为 MySQL 实现 MVCC 提供了一个非阻塞读功能。 MVCC 的具体实现,还需
要依赖于数据库记录中的三个隐式字段、 undo log 日志、 readView
接下来,我们再来介绍一下 InnoDB 引擎的表中涉及到的隐藏字段 、 undolog 以及 readview ,从
而来介绍一下 MVCC 的原理。
6.4.2 隐藏字段
6.4.2.1 介绍
当我们创建了上面的这张表,我们在查看表结构的时候,就可以显式的看到这三个字段。 实际上除了
这三个字段以外, InnoDB 还会自动的给我们添加三个隐藏字段及其含义分别是:
而上述的前两个字段是肯定会添加的, 是否添加最后一个字段 DB_ROW_ID ,得看当前表有没有主键,
如果有主键,则不会添加该隐藏字段。
6.4.2.2 测试
1). 查看有主键的表 stu 进入服务器中的 /var/lib/mysql/itcast/ , 查看 stu 的表结构信息 , 通过如下指令 :
查看到的表结构信息中,有一栏 columns ,在其中我们会看到处理我们建表时指定的字段以外,还有
额外的两个字段 分别是: DB_TRX_ID DB_ROLL_PTR ,因为该表有主键,所以没有 DB_ROW_ID
隐藏字段。
ibd2sdi stu.ibd
1 2). 查看没有主键的表 employee
建表语句:
此时,我们再通过以下指令来查看表结构及其其中的字段信息:
查看到的表结构信息中,有一栏 columns ,在其中我们会看到处理我们建表时指定的字段以外,还有
额外的三个字段 分别是: DB_TRX_ID DB_ROLL_PTR DB_ROW_ID ,因为 employee 表是没有
指定主键的。
create table employee (id int , name varchar ( 10 ));
1
ibd2sdi employee.ibd
1 6.4.3 undolog
6.4.3.1 介绍
回滚日志,在 insert update delete 的时候产生的便于数据回滚的日志。
insert 的时候,产生的 undo log 日志只在回滚时需要,在事务提交后,可被立即删除。
update delete 的时候,产生的 undo log 日志不仅在回滚时需要,在快照读时也需要,不会立即
被删除。
6.4.3.2 版本链
有一张表原始数据为:
DB_TRX_ID : 代表最近修改事务 ID ,记录插入这条记录或最后一次修改该记录的事务 ID ,是
自增的。
DB_ROLL_PTR : 由于这条数据是才插入的,没有被更新过,所以该字段值为 null 然后,有四个并发事务同时在访问这张表。
A. 第一步
当事务 2 执行第一条修改语句时,会记录 undo log 日志,记录数据变更之前的样子 ; 然后更新记录,
并且记录本次操作的事务 ID ,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。
B. 第二步
当事务 3 执行第一条修改语句时,也会记录 undo log 日志,记录数据变更之前的样子 ; 然后更新记
录,并且记录本次操作的事务 ID ,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。 C. 第三步
当事务 4 执行第一条修改语句时,也会记录 undo log 日志,记录数据变更之前的样子 ; 然后更新记
录,并且记录本次操作的事务 ID ,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。
最终我们发现,不同事务或相同事务对同一条记录进行修改,会导致该记录的 undolog 生成一条
记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。
6.4.4 readview 字段
含义
m_ids
当前活跃的事务 ID 集合
min_trx_id
最小活跃事务 ID
max_trx_id
预分配事务 ID ,当前最大事务 ID+1 (因为事务 ID 是自增的)
creator_trx_id
ReadView 创建者的事务 ID
条件
是否可以访问
说明
trx_id ==
creator_trx_id
可以访问该版本
成立,说明数据是当前这个事
务更改的。
trx_id < min_trx_id
可以访问该版本
成立,说明数据已经提交了。
trx_id > max_trx_id
不可以访问该版本
成立,说明该事务是在
ReadView 生成后才开启。
min_trx_id <= trx_id
<= max_trx_id
如果 trx_id 不在 m_ids 中,
是可以访问该版本的
成立,说明数据已经提交。
ReadView (读视图)是 快照读 SQL 执行时 MVCC 提取数据的依据,记录并维护系统当前活跃的事务
(未提交的) id
ReadView 中包含了四个核心字段:
而在 readview 中就规定了版本链数据的访问规则:
trx_id 代表当前 undolog 版本链对应事务 ID
不同的隔离级别,生成 ReadView 的时机不同:
READ COMMITTED :在事务中每一次执行快照读时生成 ReadView
REPEATABLE READ :仅在事务中第一次执行快照读时生成 ReadView ,后续复用该 ReadView
6.4.5 原理分析
6.4.5.1 RC 隔离级别
RC 隔离级别下,在事务中每一次执行快照读时生成 ReadView 我们就来分析事务 5 中,两次快照读读取数据,是如何获取数据的 ?
在事务 5 中,查询了两次 id 30 的记录,由于隔离级别为 Read Committed ,所以每一次进行快照读
都会生成一个 ReadView ,那么两次生成的 ReadView 如下。
那么这两次快照读在获取数据时,就需要根据所生成的 ReadView 以及 ReadView 的版本链访问规则,
undolog 版本链中匹配数据,最终决定此次快照读返回的数据。
A. 先来看第一次快照读具体的读取过程:
在进行匹配时,会从 undo log 的版本链,从上到下进行挨个匹配:
先匹配
这条记录,这条记录对应的
trx_id 4 ,也就是将 4 带入右侧的匹配规则中。 ①不满足 ②不满足 ③不满足 ④也不满足 ,
都不满足,则继续匹配 undo log 版本链的下一条。
再匹配第二条
,这条
记录对应的 trx_id 3 ,也就是将 3 带入右侧的匹配规则中。①不满足 ②不满足 ③不满足 ④也
不满足 ,都不满足,则继续匹配 undo log 版本链的下一条。 再匹配第三条
,这条记
录对应的 trx_id 2 ,也就是将 2 带入右侧的匹配规则中。①不满足 ②满足 终止匹配,此次快照
读,返回的数据就是版本链中记录的这条数据。
B. 再来看第二次快照读具体的读取过程 :
在进行匹配时,会从 undo log 的版本链,从上到下进行挨个匹配:
先匹配
这条记录,这条记录对应的
trx_id 4 ,也就是将 4 带入右侧的匹配规则中。 ①不满足 ②不满足 ③不满足 ④也不满足 ,
都不满足,则继续匹配 undo log 版本链的下一条。
再匹配第二条
,这条
记录对应的 trx_id 3 ,也就是将 3 带入右侧的匹配规则中。①不满足 ②满足 。终止匹配,此次
快照读,返回的数据就是版本链中记录的这条数据。
6.4.5.3 RR 隔离级别
RR 隔离级别下,仅在事务中第一次执行快照读时生成 ReadView ,后续复用该 ReadView 。 而 RR 是可
重复读,在一个事务中,执行两次相同的 select 语句,查询到的结果是一样的。
MySQL 是如何做到可重复读的呢 ? 我们简单分析一下就知道了 我们看到,在 RR 隔离级别下,只是在事务中第一次快照读时生成 ReadView ,后续都是复用该
ReadView ,那么既然 ReadView 都一样, ReadView 的版本链匹配规则也一样, 那么最终快照读返
回的结果也是一样的。
所以呢, MVCC 的实现原理就是通过 InnoDB 表的隐藏字段、 UndoLog 版本链、 ReadView 来实现的。
MVCC + 锁,则实现了事务的隔离性。 而一致性则是由 redolog undolog 保证。
7. MySQL 管理
7.1 系统数据库
Mysql 数据库安装完成后,自带了一下四个数据库,具体作用如下: 数据库
含义
mysql
存储 MySQL 服务器正常运行所需要的各种信息 (时区、主从、用
户、权限等)
information_schema
提供了访问数据库元数据的各种表和视图,包含数据库、表、字段类
型及访问权限等
performance_schema
MySQL 服务器运行时状态提供了一个底层监控功能,主要用于收集
数据库服务器性能参数
sys
包含了一系列方便 DBA 和开发人员利用 performance_schema
性能数据库进行性能调优和诊断的视图
7.2 常用工具
7.2.1 mysql
mysql 不是指 mysql 服务,而是指 mysql 的客户端工具。
-e 选项可以在 Mysql 客户端执行 SQL 语句,而不用连接到 MySQL 数据库再执行,对于一些批处理脚本,
这种方式尤其方便。
示例:
语法 :
mysql [options] [database]
选项 :
-u, --user=name # 指定用户名
-p, --password[=name] # 指定密码
-h, --host=name # 指定服务器 IP 或域名
-P, --port=port # 指定连接端口
-e, --execute=name # 执行 SQL 语句并退出
1
2
3
4
5
6
7
8
mysql -uroot –p123456 db01 -e "select * from stu";
1 7.2.2 mysqladmin
mysqladmin 是一个执行管理操作的客户端程序。可以用它来检查服务器的配置和当前状态、创建并
删除数据库等。
示例:
通过帮助文档查看选项:
mysqladmin --help
1
2
语法 :
mysqladmin [options] command ...
选项 :
-u, --user=name # 指定用户名
-p, --password[=name] # 指定密码
-h, --host=name # 指定服务器 IP 或域名
-P, --port=port # 指定连接端口
1
2
3
4
5
6
7
mysqladmin -uroot –p1234 drop 'test01' ;
mysqladmin -uroot –p1234 version;
1
2 7.2.3 mysqlbinlog
由于服务器生成的二进制日志文件以二进制格式保存,所以如果想要检查这些文本的文本格式,就会使
用到 mysqlbinlog 日志管理工具。
示例 :
A. 查看 binlog.000008 这个二进制文件中的数据信息
上述查看到的二进制日志文件数据信息量太多了,不方便查询。 我们可以加上一个参数 -s 来显示简
单格式。
语法 :
mysqlbinlog [options] log-files1 log-files2 ...
选项 :
-d, --database=name 指定数据库名称,只列出指定的数据库相关操作。
-o, --offset=# 忽略掉日志中的前 n 行命令。
-r,--result-file=name 将输出的文本格式日志输出到指定文件。
-s, --short-form 显示简单格式, 省略掉一些信息。
--start-datatime=date1 --stop-datetime=date2 指定日期间隔内的所有日志。
--start-position=pos1 --stop-position=pos2 指定位置间隔内的所有日志。
1
2
3
4
5
6
7
8
9 7.2.4 mysqlshow
mysqlshow 客户端对象查找工具,用来很快地查找存在哪些数据库、数据库中的表、表中的列或者索
引。
示例:
语法 :
mysqlshow [options] [db_name [table_name [col_name]]]
选项 :
--count 显示数据库及表的统计信息(数据库,表 均可以不指定)
-i 显示指定数据库或者指定表的状态信息
示例:
# 查询 test 库中每个表中的字段书,及行数
mysqlshow -uroot -p2143 test --count
# 查询 test 库中 book 表的详细情况
mysqlshow -uroot -p2143 test book --count
1
2
3
4
5
6
7
8
9
10
11
12
13 A. 查询每个数据库的表的数量及表中记录的数量
mysqlshow -uroot -p1234 --count
B. 查看数据库 db01 的统计信息
mysqlshow -uroot -p1234 db01 --count
C. 查看数据库 db01 中的 course 表的信息
mysqlshow -uroot -p1234 db01 course --count
D. 查看数据库 db01 中的 course 表的 id 字段的信息
mysqlshow -uroot -p1234 db01 course id --count
7.2.5 mysqldump
mysqldump 客户端工具用来备份数据库或在不同数据库之间进行数据迁移。备份内容包含创建表,及
插入表的 SQL 语句。 示例 :
A. 备份 db01 数据库
mysqldump -uroot -p1234 db01 > db01.sql
可以直接打开 db01.sql ,来查看备份出来的数据到底什么样。
语法 :
mysqldump [options] db_name [tables]
mysqldump [options] --database/-B db1 [db2 db3...]
mysqldump [options] --all-databases/-A
连接选项 :
-u, --user=name 指定用户名
-p, --password[=name] 指定密码
-h, --host=name 指定服务器 ip 或域名
-P, --port=# 指定连接端口
输出选项:
--add-drop-database 在每个数据库创建语句前加上 drop database 语句
--add-drop-table 在每个表创建语句前加上 drop table 语句 , 默认开启 ;
开启 (--skip-add-drop-table)
-n, --no-create-db 不包含数据库的创建语句
-t, --no-create-info 不包含数据表的创建语句
-d --no-data 不包含数据
-T, --tab=name 自动生成两个文件:一个 .sql 文件,创建表结构的语句;一
.txt 文件,数据文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 备份出来的数据包含:
删除表的语句
创建表的语句
数据插入语句
如果我们在数据备份时,不需要创建表,或者不需要备份数据,只需要备份表结构,都可以通过对应的
参数来实现。
B. 备份 db01 数据库中的表数据,不备份表结构 (-t)
mysqldump -uroot -p1234 -t db01 > db01.sql
打开 db02.sql ,来查看备份的数据,只有 insert 语句,没有备份表结构。
C. db01 数据库的表的表结构与数据分开备份 (-T)
mysqldump -uroot -p1234 -T /root db01 score 执行上述指令,会出错,数据不能完成备份,原因是因为我们所指定的数据存放目录 /root MySQL
为是不安全的,需要存储在 MySQL 信任的目录下。那么,哪个目录才是 MySQL 信任的目录呢,可以查看
一下系统变量 secure_file_priv 。执行结果如下:
上述的两个文件 score.sql 中记录的就是表结构文件,而 score.txt 就是表数据文件,但是需
要注意表数据文件,并不是记录一条条的 insert 语句,而是按照一定的格式记录表结构中的数据。如
下:
7.2.6 mysqlimport/source
1). mysqlimport
mysqlimport 是客户端数据导入工具,用来导入 mysqldump -T 参数后导出的文本文件。
2). source
如果需要导入 sql 文件 , 可以使用 mysql 中的 source 指令 :
语法 :
mysqlimport [options] db_name textfile1 [textfile2...]
示例 :
mysqlimport -uroot -p2143 test /tmp/city.txt
1
2
3
4
语法 :
source /root/xxxxx.sql
1
2
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论