LeetCode:1143. 1909. 521. (今日三题)

1,链接:1143. 最长公共子序列 - 力扣(LeetCode)

题目信息:

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

题目解析:(dp)

以图中字符串为例:

求解字符串s1和s2:abcde与aced的最长公共子序列

分析:符合动态规划的特性:最优子结构和子问题重叠;

状态转移方程如图:s1.charAt(i)==s2.charAt(j):dp[i][j]=dp[i-1][j-1]+1

s1.charAt(i)!=s2.charAt(j):dp[i][j]=max(dp[i-1][j] , dp[i][j-1]

解题方法:dp

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int len1=text1.length();
        int len2=text2.length();
        int[][]dp=new int[len1+1][len2+1];
        for(int i=1;i<=len1;i++)
        {
            for(int j=1;j<=len2;j++)
            {
                if(text1.charAt(i-1)==text2.charAt(j-1))dp[i][j]=dp[i-1][j-1]+1;
                else dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
            }
        }
        return dp[len1][len2];
    }
}

2,链接:1909. 删除一个元素使数组严格递增 - 力扣(LeetCode)

题目信息:

给你一个下标从 0 开始的整数数组 nums ,如果 恰好 删除 一个 元素后,数组 严格递增 ,那么请你返回 true ,否则返回 false 。如果数组本身已经是严格递增的,请你也返回 true 。

数组 nums 是 严格递增 的定义为:对于任意下标的 1 <= i < nums.length 都满足 nums[i - 1] < nums[i] 。

题目解析:无

解题方法:遍历

代码及详细解析:

思路:寻找山峰和低谷

遍历数组找到递减数对,大数为数组第i-1个,小数为数组第i个,两种步骤:删除第i个或第i-1个数【大数开头、小数结尾优先判断,且直接删除即可保证递增】

  1. 若i+1=len;则说明小数在末尾,直接删除即可

  1. nums[i+1]>nums[i-1]:则删除第i个即可

  1. 若i-1=0;则说明大数在开头,删除即可

  1. nums[i]>nums[i-2]:则删除大数i-1即可

class Solution {
    public boolean canBeIncreasing(int[] nums) {
        int len=nums.length;
        boolean vi=true;//数组是否是第一次删除数字
        for(int i=1;i<len;i++)
        {
            if(nums[i]<=nums[i-1])//找到递减数对
            {
                if(vi)//若数组不是第一次删除数字直接返回false
                {
                    if(i+1==len||nums[i+1]>nums[i-1])vi=false;//小数在末尾或删除第i个(小数)的情况
                    else if(i-1==0||nums[i]>nums[i-2])vi=false;//大数在开头或删除第i-1(大数)的情况
                    else return false;//都不符合则不能保证递增
                }
                else return false;
            }
        }
        return true;
    }
}

3,链接:521. 最长特殊序列 Ⅰ - 力扣(LeetCode)

题目信息:

给你两个字符串 a 和 b,请返回 这两个字符串中 最长的特殊序列 的长度。如果不存在,则返回 -1 。

「最长特殊序列」 定义如下:该序列为 某字符串独有的最长子序列(即不能是其他字符串的子序列) 。

字符串 s 的子序列是在从 s 中删除任意数量的字符后可以获得的字符串。

例如,"abc" 是 "aebdc" 的子序列,因为删除 "aebdc" 中斜体加粗的字符可以得到 "abc" 。 "aebdc" 的子序列还包括 "aebdc" 、 "aeb" 和 "" (空字符串)。

题目解析:

典型阅读理解题!!,两个字符串,最长的一定是最长特殊序列,若相等,则判断字符串是否相等,否则就返回字符串长度。

解题方法:

class Solution {
    public int findLUSlength(String a, String b) {
        int l1=a.length();
        int l2=b.length();
        if(a.equals(b))return -1;
        return l1>l2?l1:l2;
    }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在下路人森

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值