事先声明,本篇博文仅对其中的盈利算法进行分析,不涉及对任何平台或个人的攻击,但若是对这个算法感兴趣的朋友可以和博主共同探讨研究。另外省流,这个玩意赚不了几个钱,只是要提醒大家要擦亮双眼,不要被某些黑心商家坑。
一、唰单机制算法
大家应该都知道某鱼平台吧(怕被针对,所以仙君说的比较隐晦,就是那个黄黄的,带有自己名字logo的平台),在那个平台上买东西的时候是不是遇到很多商家成交量和好评率都很高呢,类似于这种(无恶意,纯展示)。我个人觉得这种情况大概率是刷单刷出来的,但是这个平台挺有意思,它甚至给你倒贴钱让你在这上面唰单。众所周知,你只要正式注册账户就是里面的会员,而根据你的会员等级在每周周五都可以领一个折扣券,这个折扣券的等级是这样的(打开链接)。
等级 | 对应权益 |
X1 | 2r |
x2 | 2r |
X3 | 2r |
X4 | 2r |
X5 | 2r |
X6 | 2r |
X7 | 2r |
X8 | 3r |
x9 | 4r |
X10 | 5r |
使用这个红包时,要满足订单金额满20元才能用,如果订单金额不足20元,就无法抵扣。通常情况下,购买大部分商品都能用这个红包,不过一些特殊商品或特定店铺可能不支持,具体要看商品详情页或者结算页面显示。红包的有效期一般为1到7天不等,用户得在有效期内用掉,否则会失效。
前景提要到此结束,开始进行分析,对于商家而言,平台的抽成费用为0.06%,20元的抽成就是0.12元,而这个红包的折扣最低就是2元,是以一单的利润就是1.88元,这样一听是不是很赚呢?然而更赚的还在后面。
二、系统激励机制
昨天仙君用新换的手机号注册了一个新的账号,新账号的等级肯定为1对吧,然后领个券准备买个东西。要知道某鱼的会员等级是可以升级的,其根据买东西的数量与金额以及卖东西的数量与金额可以提升,当然拉人头这种情况也可以加。通过相关开源资料查找,基本可以手撕其基本代码:
class User:
def __init__(self, username):
self.username = username
self.level = 'X1'
self.experience = 0
self.transactions = []
def buy(self, seller, amount):
transaction = {'buyer': self, 'seller': seller, 'amount': amount}
self.transactions.append(transaction)
seller.transactions.append(transaction)
self.experience += amount * 0.1
seller.experience += amount * 0.1
self.calculate_level()
seller.calculate_level()
print(f"{self.username}购买了{seller.username}的商品,交易金额:{amount}元")
print(f"{self.username}经验值:{self.experience},等级:{self.level}")
print(f"{seller.username}经验值:{seller.experience},等级:{seller.level}")
def sell(self, buyer, amount):
transaction = {'buyer': buyer, 'seller': self, 'amount': amount}
self.transactions.append(transaction)
buyer.transactions.append(transaction)
self.experience += amount * 0.1
buyer.experience += amount * 0.1
self.calculate_level()
buyer.calculate_level()
print(f"{self.username}出售了商品给{buyer.username},交易金额:{amount}元")
print(f"{self.username}经验值:{self.experience},等级:{self.level}")
print(f"{buyer.username}经验值:{buyer.experience},等级:{buyer.level}")
def calculate_level(self):
if self.experience >= 1000:
self.level = 'X10'
elif self.experience >= 800:
self.level = 'X9'
elif self.experience >= 600:
self.level = 'X8'
elif self.experience >= 400:
self.level = 'X7'
elif self.experience >= 300:
self.level = 'X6'
elif self.experience >= 200:
self.level = 'X5'
elif self.experience >= 100:
self.level = 'X4'
elif self.experience >= 50:
self.level = 'X3'
elif self.experience >= 20:
self.level = 'X2'
else:
self.level = 'X1'
user1 = User("卖家1")
user2 = User("买家1")
user1.sell(user2, 100)
user2.buy(user1, 200)
在这个代码示例中,我们定义了一个用户类 User
,每个用户有用户名、等级、经验值和交易记录等属性。用户可以进行买卖操作,每次交易都会增加买卖双方的经验值,经验值达到一定数值时,用户的等级就会提升。然后回归正题哈,在买了一个东西之后,我升级到了2级。
然后不知道是激励机制还是系统BUG吧,这个时候我又能重新领一次券了,然后我不信邪,让隔壁村的王哥上传了一个20块的项目,我试着购买一下,果不其然,这个券能用,并且我还升级到三级了。
到了三级之后,居然还可以领券,这个时候基本可以确定是每个等级都能领一张券。但是如果要从3级升级到4级,光靠买东西还不够,你还需要卖点东西出去。为了研究这个情况,我连忙效仿隔壁王哥上传了几个项目,让他帮我买下来,就跟第一个图里面介绍的那样,越到后面折扣越大,我们团伙也算是小赚了一笔。
三、防作弊机制
开玩笑,在CSDN上说话仙君都要这么小心翼翼,你要是在某鱼只有两个人互相刷肯定要被封号的,以下是仙君写的一个简单的模拟闲鱼售卖时防刷单算法的代码示例:
import random
import time
class User:
def __init__(self, user_id, username):
self.user_id = user_id
self.username = username
self.level = 'X1'
self.experience = 0
self.transactions = []
self.last_transaction_time = None
self.transaction_frequency = 0 # 交易频率,单位:次/分钟
self.is_banned = False
def sell(self, buyer, amount):
if self.is_banned:
print(f"用户 {self.username} 已被封号,无法进行交易!")
return
current_time = time.time()
if self.last_transaction_time is not None:
time_diff = current_time - self.last_transaction_time # 两次交易时间间隔,单位:秒
if time_diff < 60: # 如果两次交易时间间隔小于1分钟
self.transaction_frequency += 1
else:
self.transaction_frequency = 1
else:
self.transaction_frequency = 1
self.last_transaction_time = current_time
# 检测交易频率是否异常
if self.transaction_frequency > 10: # 假设每分钟交易超过10次为异常
self.is_banned = True
print(f"检测到用户 {self.username} 交易频率异常,已封号!")
return
transaction = {'buyer': buyer, 'seller': self, 'amount': amount, 'time': current_time}
self.transactions.append(transaction)
buyer.transactions.append(transaction)
self.experience += amount * 0.1
buyer.experience += amount * 0.1
self.calculate_level()
buyer.calculate_level()
print(f"{self.username} 出售了商品给 {buyer.username},交易金额:{amount} 元")
print(f"{self.username} 经验值:{self.experience},等级:{self.level}")
print(f"{buyer.username} 经验值:{buyer.experience},等级:{buyer.level}")
def buy(self, seller, amount):
if self.is_banned:
print(f"用户 {self.username} 已被封号,无法进行交易!")
return
current_time = time.time()
if self.last_transaction_time is not None:
time_diff = current_time - self.last_transaction_time
if time_diff < 60:
self.transaction_frequency += 1
else:
self.transaction_frequency = 1
else:
self.transaction_frequency = 1
self.last_transaction_time = current_time
# 检测交易频率是否异常
if self.transaction_frequency > 10:
self.is_banned = True
print(f"检测到用户 {self.username} 交易频率异常,已封号!")
return
transaction = {'buyer': self, 'seller': seller, 'amount': amount, 'time': current_time}
self.transactions.append(transaction)
seller.transactions.append(transaction)
self.experience += amount * 0.1
seller.experience += amount * 0.1
self.calculate_level()
seller.calculate_level()
print(f"{self.username} 购买了 {seller.username} 的商品,交易金额:{amount} 元")
print(f"{self.username} 经验值:{self.experience},等级:{self.level}")
print(f"{seller.username} 经验值:{seller.experience},等级:{seller.level}")
def calculate_level(self):
if self.experience >= 1000:
self.level = 'X10'
elif self.experience >= 800:
self.level = 'X9'
elif self.experience >= 600:
self.level = 'X8'
elif self.experience >= 400:
self.level = 'X7'
elif self.experience >= 300:
self.level = 'X6'
elif self.experience >= 200:
self.level = 'X5'
elif self.experience >= 100:
self.level = 'X4'
elif self.experience >= 50:
self.level = 'X3'
elif self.experience >= 20:
self.level = 'X2'
else:
self.level = 'X1'
# 模拟用户交易行为
users = [User(i, f"用户_{i}") for i in range(1, 6)]
# 模拟正常交易行为
for _ in range(20):
seller = random.choice(users)
buyer = random.choice([user for user in users if user != seller])
amount = random.randint(10, 100)
seller.sell(buyer, amount)
time.sleep(random.uniform(0.1, 1.0)) # 随机间隔时间,模拟正常交易节奏
# 模拟刷单行为(短时间内频繁交易)
brusher = User(6, "刷单用户")
buyer = random.choice(users)
for _ in range(20):
amount = random.randint(10, 100)
brusher.sell(buyer, amount)
time.sleep(0.05) # 极短时间间隔,模拟刷单行为
这个代码只是一个简单的示例,实际的防刷单算法会更加复杂,可能涉及更多的数据维度和机器学习模型来检测异常交易行为,这里面的细节仙君也不懂哈,反正我的解决方法是让王哥把村里面的大姑娘小寡妇号召起来,人数多了就没有事了,至少我现在账号还良好。
四、获利统计计算
某鱼的会员等级满级是10级,想把它搞满还是有难度的,如果是按照八级算的话应该差不多吧,那么一次就是20块的获利,然后每周的话都有一次领券的机会,一个月四周,那么就是80块。
其实也没几个钱,在某鱼给仙君打广告费之前仙君并不支持大家这么做,只是要提醒大家要擦亮双眼,不要被黑心商家坑,最后,我不知道像某宝、某东是否有类似的东西,我有空的话去研究研究,也欢迎感兴趣的小伙伴找我一起讨论讨论。