【C语言】函数递归的简单理解 &画图理解递归过程_[初阶篇 _学习专用]

本文介绍了递归的概念,包括它的定义、理解方式和两个必要的条件。通过实例展示了如何使用递归打印整数和计算字符串长度,并与迭代方法进行了比较。递归与迭代在阶乘计算和斐波那契数列求解中各有优劣,递归简洁但效率较低,迭代效率高但可能较为复杂。文章探讨了何时选择递归或迭代的考量因素。
摘要由CSDN通过智能技术生成

🌿🌿前言

☀️☀️大家好,我是Catzzz666,一个一心让大家变强的博主。

🔆🔆什么是递归?

递归(recursion):程序调用自身的一种编程技巧。

😀如何理解函数递归:

1.从调用自身层面:函数递归就是函数自己调用自己。

2.从编程技巧层面:一种方法(把一个大型复杂的程序转换为一个类似小型简单的程序),这种方法的主要思想就是把大事化小

🎧🎧递归两个必要条件

1.存在限制条件,当满足这个限制条件时,递归便不再继续。

2.每次递归调用之后越来越接近这个限制条件。🥗🥗

👻👻递归实例

⛳️实例1(按照顺序打印一个数的整形值)

参考代码(可以先去尝试是否可以解决问题)

🏌画图讲解 

 🔫注意:在每次打印后都有一个空格。

🌐程序运行结果

🛠完整代码 

#include <stdio.h>
void print(int n)
{
    if(n>9)
    {
        print(n/10);
    }
    printf("%d ", n%10);
}

int main()
{
    int num = 1234;
    print(num);
    return 0;
}

🐴实例2 (使用函数在不创建变量的情况下求字符串长度)

参考代码

 🚁画图讲解

 👿程序运行结果

😗完整代码

#include <stdio.h>
int Strlen(const char* str)
{
	if (*str == '\0')
		return 0;
	else
		return 1 + Strlen(str + 1);
}
int main()
{
	char* p = "abcd";
	int len = Strlen(p);
	printf("%d\n", len);
	return 0;
}

😁😁递归与迭代

迭代是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果。 每一次对过程的重复称为一次“迭代”,而每一次迭代得到的结果会作为下一次迭代的初始值。 目前对于c语言来说,迭代可以简单认为是循环结构

对于递归与迭代,我们同样通过两个实例来理解:

🕹实例1 (求n的阶乘)

方法一(使用递归

参考代码

通过数学方法讲解

完整代码 

#include <stdio.h>
int fac(int n)
{
	if (n == 1)
		return 1;
	else
		return n * fac(n - 1);
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = fac(n);
	printf("%d\n", ret);
	return 0;
}

方法二(使用迭代)

完整代码

#include <stdio.h>
int main()
{
	int n = 0;
	scanf("%d", &n);
	int i = 0;
	int ret = 1;
	for (i = 1; i <= n; i++)
	{
		ret *= i;
	}
	printf("%d\n", ret);
	return 0;
}

 运行结果

😆实例2 (求解斐波那契数列)

斐波那契数列:指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)

🔍方法一 (递归求解)

 参考代码

💰通过数学方法求解 

运行结果 

 

完整代码 

#include <stdio.h>
int fib(int n)
{
	if (n <= 2)
		return 1;
	else
		return fib(n - 1) + fib(n - 2);
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = fib(n);
	printf("%d\n", ret);
	return 0;
}

🤓注意:当求得的数字较大时,使用递归的方法计算机所要计算的量是相当大的,因为每次计算一个第n项时都需要计算第n-1项和第n-2项 ,这里我们通过求解第40项来观察fib(3)的计算次数来观察。

 运行结果

👵 计算第40项时已经计算第3项已经有三千多万次,那么如果计算第一百项,一千项...时程序就会崩溃...这是我们就要考虑使用迭代的方法进行求解。

🐷方法二(迭代求解) 

参考代码 (主函数不变)

画图讲解 

📯完整代码 

#include <stdio.h>
int fib(int n)
{
	int a = 1;
	int b = 1;
	int c = 1;
	while (n > 2)
	{
		c = a + b;
		a = b;
		b = c;
		n--;
	}
	return c;
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = fib(n);
	printf("%d\n", ret);
	return 0;
}

💜运行结果 

这里我们可以看出递归和迭代的运行结果是一样的,但是迭代的运行速度要更快。 

这时候我们会想:

为什么有时候用递归简便,而有时候用迭代简便呢?

🔴 注意:

1.许多问题是以递归的形式进行求解的,这只是因为它比非递归的形式更加清晰

2.但是这些问题的迭代实现往往比递归实现效率更高,虽然可读性差些。

3.当一个问题相当复杂时,此时递归实现的简洁性便可以弥补它所带来的运行开销

评论 51
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

new出新对象

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值