
SENet论文理解与代码复现(pytorch)
通过自动学习的方式(用另外一个神经网络实现)获取到每个特征通道的重要程度,然后用这个重要程度去给每一个特征通道赋予权重值,从而让神经网络重点关注某些特征通道。在神经网络中加入注意力机制有很多方法,可以在空间维度引入注意力机制(eg inception结构,让并联的卷积层分配不同的权重),也可以在通道维度引入attention机制。SENet的核心思想在于通过全连接网络根据loss去自动学习特征权重(并不是直接根据特征通道的数值分布来判断),使得有效的特征通道权重大。SENet-pytorch代码链接。






