STM32通过ESP8266连接阿里云,并完成点灯(第四讲 硬件连接与代码移植)

    今天与大家分享STM32通过ESP8266连接阿里云,主要讲述硬件的连接和代码的移植。

    另外新创建了公众号“宝藏Code园”,本系列相关代码将在公众号里面开源。需要本项目相关工程代码可以关注公众号后台回复“ESP8266”获取(免费),或者点击置顶资源链接。

1.硬件连接

    我这边使用的面包板,用到的是stm32的PA9和PA10两个硬件,与ESP8266进行通信。同时PA4接的二极管。

调试接线表

2.代码移植 

将项目代码ESP8266阿里云点灯以及DHT11温湿度上云_stm32利用阿里云控制led灯流程图资源-CSDN文库

     记住将代码里面关于AT指令的部分,改为自己设置的MQTT 连接参数,具体参数见上一讲。同时printf里面的格式不要修改。

     下载调试后可以看见串口助手中在依次打印AT指令,完成之后一个返回OK后,阿里云平台上面就显示“在线”状态。

3.点灯

       此代码是用来接收阿里云平台下发的指令,并且行相应控制的。但是接收阿里云下发的指令,需要将ESP8266在调试时接在usb-ttl上面的TX接到PA10引脚上面,否则无法接收数据。

       在完成代码移植后,设备会显示在线,点击如下图中的发布消息。

     输入设置的对应的指令,则可以完成对LED灯的控制。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会飞的J同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值