树与图的dfs和bfs(C++)

本文对比了树与图的数据结构特性,并通过C++代码实例展示了如何使用深度优先遍历(DFS)和宽度优先遍历(BFS)在树中查找子节点和在图中进行节点连通性分析。重点讲解了这两个算法在实际编程中的应用场景和区别。
摘要由CSDN通过智能技术生成

树是图(树是图的子集),图不一定是树

树有一个根节点,图没有
树可以递归遍历,图要看情况
树有层次划分,图没有

树是一种“层次”关系,
图是“网络”关系

图可分为有向和无向,也可分为有环和无环,树是有向无环图  

 

树与图的存储与深度优先遍历

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1000010,M = N*2;
int n;
int h[N],e[M],ne[M],idx;
bool st[N];
int ans = N;

void add(int a,int b)//为两个数据之间增加边,建立图
{
	e[idx] = b , ne[idx] = h[a],h[a] = idx ++;
	
}

int dfs(int u)//深度优先遍历,寻找以u节点为根结点的子结点数量
{
	st[u] = true;
	
	int sum = 1,res = 0;
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int j = e[i];
		if(!st[j])
		{
			int s = dfs(j);
			res = max(res,s);
			sum +=s;
		}
	}
	res = max(res,n-sum);
	
	ans = min(ans,res);
	
	return sum ;
}

int main()
{
	ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
	memset(h,-1,sizeof h);
	cin >> n;
	int a,b;
	for(int i=0;i<n-1;i++)
	{
		cin >> a >> b;
		add(a,b),add(b,a);
	}
	
	dfs(1);
	
	cout << ans <<endl;
	return 0;
}

 树与图的宽度优先遍历

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1000010;
int n,m;
int h[N],e[N],ne[N],idx;
int d[N],q[N];

void add(int a,int b)
{
	e[idx] = b , ne[idx] = h[a],h[a] = idx ++;
	
}

int bfs()
{
	int hh = 0,tt = 0;
	q[0] = 1;
	memset(d,-1,sizeof d);
	d[1] = 0;
	while(hh <= tt)
	{
		int t =  q[hh ++ ];
		for(int i=h[t];i!=-1;i=ne[i])
		{
			int j = e[i];
			if(d[j] == -1)
			{
				d[j] = d[t] +1;
				q[++tt] = j;
			}
		}
	}
	return d[n];
}

int main()
{
	ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
	memset(h,-1,sizeof h);
	cin >> n;
	int a,b;
	for(int i=0;i<n-1;i++)
	{
		cin >> a >> b;
		add(a,b),add(b,a);
	}
	
	cout << bfs() <<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值