树是图(树是图的子集),图不一定是树
树有一个根节点,图没有
树可以递归遍历,图要看情况
树有层次划分,图没有树是一种“层次”关系,
图是“网络”关系图可分为有向和无向,也可分为有环和无环,树是有向无环图
图
树与图的存储与深度优先遍历
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1000010,M = N*2;
int n;
int h[N],e[M],ne[M],idx;
bool st[N];
int ans = N;
void add(int a,int b)//为两个数据之间增加边,建立图
{
e[idx] = b , ne[idx] = h[a],h[a] = idx ++;
}
int dfs(int u)//深度优先遍历,寻找以u节点为根结点的子结点数量
{
st[u] = true;
int sum = 1,res = 0;
for(int i=h[u];i!=-1;i=ne[i])
{
int j = e[i];
if(!st[j])
{
int s = dfs(j);
res = max(res,s);
sum +=s;
}
}
res = max(res,n-sum);
ans = min(ans,res);
return sum ;
}
int main()
{
ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
memset(h,-1,sizeof h);
cin >> n;
int a,b;
for(int i=0;i<n-1;i++)
{
cin >> a >> b;
add(a,b),add(b,a);
}
dfs(1);
cout << ans <<endl;
return 0;
}
树与图的宽度优先遍历
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1000010;
int n,m;
int h[N],e[N],ne[N],idx;
int d[N],q[N];
void add(int a,int b)
{
e[idx] = b , ne[idx] = h[a],h[a] = idx ++;
}
int bfs()
{
int hh = 0,tt = 0;
q[0] = 1;
memset(d,-1,sizeof d);
d[1] = 0;
while(hh <= tt)
{
int t = q[hh ++ ];
for(int i=h[t];i!=-1;i=ne[i])
{
int j = e[i];
if(d[j] == -1)
{
d[j] = d[t] +1;
q[++tt] = j;
}
}
}
return d[n];
}
int main()
{
ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
memset(h,-1,sizeof h);
cin >> n;
int a,b;
for(int i=0;i<n-1;i++)
{
cin >> a >> b;
add(a,b),add(b,a);
}
cout << bfs() <<endl;
return 0;
}
本文对比了树与图的数据结构特性,并通过C++代码实例展示了如何使用深度优先遍历(DFS)和宽度优先遍历(BFS)在树中查找子节点和在图中进行节点连通性分析。重点讲解了这两个算法在实际编程中的应用场景和区别。

210

被折叠的 条评论
为什么被折叠?



