人工智能 --- 吉布斯采样

文章详细阐述了在含有四个二元随机变量的贝叶斯网络中,如何利用吉布斯采样方法进行变量状态的更新。首先,根据给定的观察值和初始样本,计算变量S在特定随机数下的状态,接着对变量C进行采样,更新样本状态。整个过程展示了贝叶斯网络中条件概率和变量条件独立性的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      贝叶斯网络如下图所示,包含 4 个随机变量,每个变量都只有表示是否的两个值。请用吉布斯采样方法回答以下问题。 

假设观察到 𝑅 = +𝑟, 初始化样本中其他变量的赋值为 𝐶 = +𝑐, 𝑆 = −𝑠, 𝑊 = −𝑤。

1). 假设随机采样变量是 S,随机数是 0.235,请计算 S 的值,并给出此时的状态样本值。

2). 假设下一个采样的变量是 C,随机数是 0.625,请计算这一步采样后的状态样本是什么。 

答:

1)对后验概率分布 𝑃 (𝑆| − 𝑤, +𝑟, +𝑐) 进行随机采样。

𝑃(𝑆| − 𝑤, +𝑟, +𝑐) = 1/ 𝑍  𝑃(𝑆, −𝑤| + 𝑟, +𝑐) 𝑃(𝑆, −𝑤| + 𝑟, +𝑐) =𝑃 (𝑆| + 𝑐, +𝑟)𝑃 (−𝑤|𝑆, +𝑐, +𝑟)

   由   条件独立性   可得                   =𝑃 (𝑆| + 𝑐)𝑃 (−𝑤|𝑆, +𝑟)

根据上面的分布,随机数 0.235 将落在 −𝑠 的区间,所以,𝑆 = −𝑠,此时的样本为 +𝑐, −𝑠, +𝑟, −𝑤。

   你算概率出来,拿随机数跟概率相比,就知道它落在那块区域了。

2) 从分布 𝑃 (𝐶| − 𝑠, +𝑟, −𝑤) 中对变量 𝐶 进行采样。

𝑃(𝐶| − 𝑠, +𝑟, −𝑤) =𝑃 (𝐶| − 𝑠, +𝑟) 条件独立 = 1/ 𝑍 𝑃 (𝐶, +𝑟, −𝑠) 𝑃(𝐶, +𝑟, −𝑠) =𝑃 (𝐶, +𝑟)𝑃 (−𝑠, |𝐶, +𝑟) 由条件独立可得    =𝑃(𝐶)𝑃 (+𝑟|𝐶)𝑃 (−𝑠|𝐶)

 根据上面的分布,随机数 0.625 应该落在 +𝑐 的区间,所以此时 𝐶 = +𝑐,相应的样本值 是 +𝑐, −𝑠, +𝑟, −𝑤。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尘 关

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值