例题:数字三角形

在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或右下走。只需要求出这个最大和即可,不必给出具体路径。三角形的行数大于1小干等于100,数字为0-99。
解题思路:用二维数组存放数字三角形。
D(r,j):第r行第j个数字(r,j从1开始算)
MaxSum(r,j):从D(r,j)到底边的各条路径中,最佳路径的数字之和。
问题:求 MaxSum(1,1)
典型的递归问题。D(r,j)出发,下一步只能走D(r+1,j)或者D(r+1,j+1)。
但是,如果采用递规的方法,深度遍历每条路径,存在大量重复计算。则时间复杂度为2”,对于n=100行,肯定超时。所以,如果每算出一个MaxSum(r,j)就保存起来,下次用到其值的时候直接取用,则可免去重复计算。那么可以用O(n^2)时间完成计算。因为三角形的数字总数是 n(n+1)/2。
程序:
#include <stdio.h>
#include <iostream>
using namespace std;
int n;
int D[101][101];
int maxSum[101][101];
int MaxSum(int i, int j)
{
if (maxSum[i][j] != -1)
return maxSum[i][j];
if (j == n)
maxSum[i][j]= D[i][j];
else
{
int x = MaxSum(i + 1, j);
int y = MaxSum(i + 1, j + 1);
maxSum[i][j] = max(x, y) + D[i][j];
}
return maxSum[i][j];
}
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
for(int j=1;j<=i;j++)
{
cin >> D[i][j];
maxSum[i][j] = -1;
}
cout << MaxSum(1, 1) << endl;
return 0;
}
运行结果:

递归转化成递推
先比较最后一行两个数的大小然后与对应的数相加,以此类推直到算到第一个数。
程序:
#include <stdio.h>
#include <iostream>
using namespace std;
int n;
int D[101][101];
int maxSum[101][101];
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
for(int j=1;j<=i;j++)
{
cin >> D[i][j];
maxSum[i][j] = -1;
}
for (int i = 1; i <= n; i++)
maxSum[n][i] = D[n][i];
for (int i = n - 1; i >= 1; i--)
for (int j = 1; j <= i; j++)
maxSum[i][j] = max(maxSum[i + 1][j], maxSum[i + 1][j + 1]) + D[i][j];
cout << maxSum[1][1] << endl;
return 0;
}
空间优化:没必要用二维maxSum数组存储每一个MaxSum(r,j),只要从底层一行行向上递推,那么只要一维数组maxSum[100]即可,即只要存储一行的MaxSum值就可以。两个数比较后把结果放到前一个数的位置不影响第二次比较。如图所示

![]()
![]()
![]()
![]()
![]()
![]()
![]()
进一步考虑,连maxSum数组都可以不要,直接用D的第n行替代maxSum即可。节省空间,时间复杂度不变。
动态规划解题的一般思路:
递归到动规的一般方法:递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始,逐步填充数组,相当于计算递归函数值的逆过程。
1.将原问题分解为子问题
把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。子问题的解一旦求出就会被保存,所以每个子问题只需求解一次。
2.确定状态
在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状态”。一个“状态”对应于一个或多个子问题,所谓某个“状态”下的“值”,就是这个“状态”所对应的子问题的解。
所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。
整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。
在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。
用动态规划解题,经常碰到的情况是,K个整型变量能构成一个状态(如数字三角形中的行号和列号这两个变量构成“状态”)。如果这K个整型变量的取值范围分别是N1, N2,.....Nk,那么,我们就可以用一个K维的数组array[N1] [N2]......[Nk]来存储各个状态的“值”。这个“值”未必就是一个整数或浮点数,可能是需要一个结构才能表示的,那么array就可以是一个结构数组。一个“状态”下的“值”通常会是一个或多个子问题的解。
3.确定一些初始状态(边界状态)的值
以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。
4.确定状态转移方程
定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移——即如何从一个或多个“值”已知的“状态”,求出另一个“状态”的“值”(“人人为我”递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。
数字三角形的状态转移方程

能用动规解决的问题的特点:
1)问题具有最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质。
2)无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。
例题:最长上升子序列
一个数的序列ai,当a1< a2<...<as的时候,我们称这个序列是上升的。对于给定的一个序列(a1,a2,…, as),我们可以得到一些上升的子序列(ain, ai2, …,aik),这里1<= i1 < i2 < ...<iK <= N。比如,对于序列(1,7,3,5,9,4, 8),有它的一些上升子序列,如(1,7),(3,4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。你的任务,就是对于给定的序列,求出最长上升子序列的长度。
解题思路:
1.找子问题
“求以ak(k=1,2, 3...N)为终点的最长上升子序列的长度”,一个上升子序列中最右边的那个数,称为该子序列的“终点”。虽然这个子问题和原问题形式上并不完全一样,但是只要这N个子问题都解决了,那么这N个子问题的解中,最大的那个就是整个问题的解。
2.确定状态
子问题只和一个变量-- 数字的位置相关。因此序列中数的位置k就是“状态”,而状态k对应的“值”,就是以ak做为“终点”的最长上升子序列的长度。状态一共有N个。
3.找出状态转移方程
maxLen (k)表示以a做为“终点”的最长上升子序列的长度那么:
初始状态:maxLen(1)= 1
maxLen (k)= max{maxLen (i):1<=i<k且ai<ak且k!=1}+1
若找不到这样的i,则maxLen(k) = 1
maxLen(k)的值,就是在ak左边,“终点”数值小于ak,且长度最大的那个上升子序列的长度再加1。因为a左边任何“终点”小于ak的子序列,加上ak后就能形成一个更长的上升子序列。
程序:
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int n;
int a[1010], maxLen[1010];
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
maxLen[i] = 1;
}
for (int i = 2; i <= n; i++)
for (int j = 1; j < i; j++)
if (a[i] > a[j])
maxLen[i] = max(maxLen[i], maxLen[j] + 1);
cout << *max_element(maxLen+1, maxLen+n+1);
return 0;
}
运行结果:

动归的常用两种形式:
1)递归型
优点:直观,容易编写
缺点:可能会因递归层数太深导致爆栈,函数调用带来额外时间开销。无法使用滚动数组节省空间。总体来说,比递推型慢。
2)递推型
效率高,有可能使用滚动数组节省空间
例题:最长公共子序列
给出两个字符串,求出这样的一 个最长的公共子序列的长度:子序列 中的每个字符都能在两个原串中找到, 而且每个字符的先后顺序和原串中的 先后顺序一致。
思路:输入两个串s1,s2, 设MaxLen(i,j)表示: s1的左边i个字符形成的子串,与s2左边的j个 字符形成的子串的最长公共子序列的长度(i,j从0 开始算);
MaxLen(i,j) 就是本题的“状态” 假定 len1 = strlen(s1),len2 = strlen(s2);
那么题目就是要求 MaxLen(len1,len2);
显然:
MaxLen(n,0) = 0 ( n= 0…len1)
MaxLen(0,n) = 0 ( n=0…len2)
递推公式:
if ( s1[i-1] == s2[j-1] ) //s1的最左边字符是s1[0]
MaxLen(i,j) = MaxLen(i-1,j-1) + 1;
else
MaxLen(i,j) = Max(MaxLen(i,j-1),MaxLen(i-1,j) );
时间复杂度O(mn) m,n是两个字串长度。
程序:
int maxLen[1000][1000];
char a[1000], b[1000];
int main()
{
while (cin >> a >> b)
{
int la = strlen(a);
int lb = strlen(b);
for (int i = 0; i <= la; i++)
maxLen[i][0] = 0;
for (int i = 0; i <= lb; i++)
maxLen[0][i] = 0;
for (int i = 1; i <= la; i++)
for (int j = 1; j <= lb; j++)
if (a[i - 1] == b[j - 1])
maxLen[i][j] = maxLen[i - 1][j - 1] + 1;
else
maxLen[i][j] = max(maxLen[i][j - 1], maxLen[i - 1][j]);
cout << maxLen[la][lb]<<endl;
}
return 0;
}
运行结果

例题:最佳加法表达式
有一个由1..9组成的数字串.问如果将m个加 号插入到这个数字串中,在各种可能形成的 表达式中,值最小的那个表达式的值是多少
解题思路:假定数字串长度是n,添完加号后,表达式的最后 一个加号添加在第 i 个数字后面,那么整个表达 式的最小值,就等于在前 i 个数字中插入 m – 1 个加号所能形成的最小值,加上第 i + 1到第 n 个数字所组成的数的值(i从1开始算)。
设V(m,n)表示在n个数字中插入m个加号所能形成 的表达式最小值,那么: if m = 0 V(m,n) = n个数字构成的整数 else if n < m + 1 V(m,n) = ∞ else V(m,n) = Min{ V(m-1,i) + Num(i+1,n) } ( i = m … n-1) Num(i,j)表示从第i个数字到第j个数字所组成的数。数字编号从1开始算。此操 作复杂度是O(j-i+1),可以预处理后存起来。 总时间复杂度:O(mn2 ) 。
总时间复杂度:O(mn2 ) . 若 n 比较大,long long 不够存放运算过程中的整数,则需要使用高精度计算 (用数组存放大整数,模拟列竖式做加法),复杂度为O(mn3 )。
程序
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
int number[100 + 1];
long long num[100 + 1][100 + 1];
long long dp[100 + 1][100 + 1];
int m, n;
int Num(int i, int j)
{
int k, sum = 0, temp;
double t = j - i;
for (k = i; k <= j; ++k, --t)
{
temp = pow(10, t);
sum = sum + number[k] * temp;
}
return sum;
}
void calculate(void)
{
int i, j;
for (i = 1; i <= n; ++i)
for (j = i; j <= n; ++j)
num[i][j] = Num(i, j);
}
int main()
{
cin >> n >> m;
int i, j, p, minn = INT_MAX;
for (i = 1; i <= n; ++i)
cin >> number[i];
calculate();
for (i = 1; i <= n; ++i)
{
for (j = 0; j <= m; ++j)
{
if (j == 0)
dp[i][j] = num[1][i];
else if (i <= j)
dp[i][j] = INT_MAX;
else
{
minn = INT_MAX;
for (p = j; p <= i - 1; ++p)
{
if (minn > (dp[p][j - 1] + num[p + 1][i]))
minn = dp[p][j - 1] + num[p + 1][i];
}
dp[i][j] = minn;
}
}
}
cout << dp[n][m] << endl;
return 0;
}

313

被折叠的 条评论
为什么被折叠?



