一个矩阵的秩是由矩阵本身的结构决定的,就是由构成矩阵的列向量之间的线性相关程度决定的,与x的取值无关。
而对于Ax=b这个式子的解,x是无解的,还是有唯一解,还是有无穷解,这确实与A的秩有关了。
当A满秩是,x有唯一解。当A不满秩时,x就存在两种可能,一种是无解,一种是有无穷解。
线代对有唯一解或无解的情况扯的不多(太简单了吧),但对有无穷解的情况使劲扯。这里面最重要的一个情况是x在无穷的情况下构成一个所谓的“解空间”,这个解空间的秩会有大小,而其大小取决于A的秩。
怎么个取决于法呢?就是rA+rX=n,rA我的理解是方程组化简到最简时,剩下x系数不全为0的个数,然后就可以解出rA个未知数x,剩下的未知数就要是用其他x表示,表示的个数就是rX,A的秩越靠近满秩n,解空间的秩rX就越小,A满秩时,解空间的秩为0,就是方程Ax=b只有唯一解,整个解空间就只有一个点,秩当然就为0了。反过来,如果A的秩越小,rX就越大。但对于非零的A,其秩最小为1。rA为1,rX就为n-1了。
题主说的未知数的数量应该不是指x的维数吧?应该是指当成组里自由变量的数量。方程组里自由变量的数量与解空间的秩是一样的,有多少个自由变量(需要解题人赋值),解空间的秩就有多大。但请记住,自由变量的数目不是由x选的,而是由A的秩决定的,自由变量的数目=n-rA。
补
本答有点文不对题,题主要从方程组的角度来理解秩,本答更多是在矩阵式里来解说秩。现在补扯方程组与秩的关系。
方程组是对未知数x的一组限制条件。在每一个方程里,这一组未知数与一组系数相乘要满足一个等式,形成一个限制条件,n个方程就是n个限制条件。
但这些方程有一个“有效性”的问题,就是它给予的限制条件是不是独特的,它有没有包含在其它限制条件中的。如果一个方程给出的限制条件实际上已经包含在其它方程(或几个方程)中了,这个方程就不能提供独立的有效性,它就可以被取代。消元法就是用一个系统的办法来把这类无效的限制条件(方程)找出来。而有效的方程数量就构成了这个方程组的秩。
与矩阵式相同的是,这个有效性与未知数无关,它只与方程组的系数有关,系数之间的关系决定了有效方程的数量。
那么,有效无效到底咋定呢?就是看消元法能消出多少全零行来。有多少全零行,就有多少自由变量,就有多少解空间的秩,就知道方程组的秩是多少了。方程组的秩=n-解空间的秩