数学 {分配律,结合律};
@LOC_COUNTER: 0;
分配律
定义
令 O 1 , O 2 O1, O2 O1,O2为两个二元运算;
称O1对O2满足左分配律: 如果
x
O
1
(
y
O
2
z
)
=
(
x
O
1
y
)
O
2
(
x
O
1
z
)
x O1 (y O2 z) = (xO1y) O2 (xO1z)
xO1(yO2z)=(xO1y)O2(xO1z);
称O1对O2满足右分配律: 如果
(
y
O
2
z
)
O
1
x
=
(
y
O
1
x
)
O
2
(
z
O
1
x
)
(y O2 z)O1x = (yO1x) O2 (zO1x)
(yO2z)O1x=(yO1x)O2(zO1x);
O1对O2满足分配律: 如果O1对O2 同时满足 {左,右}分配律;