数学 {高阶导数}

高阶导数是微积分中的基本概念,表示函数连续求导的结果。对于函数y=f(x),其一阶导数为f(x),二阶导数为f(x)或(d^2y/dx^2),若函数n阶可导,则存在n阶导数。0阶导数即原函数本身。该主题主要探讨函数的连续性和可导性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学 {高阶导数}

高阶导数

定义

y = f ( x ) y = f(x) y=f(x)的导数 f ′ ( x ) f'(x) f(x), 如果仍然可导 则 y ′ = f ′ ( x ) y' = f'(x) y=f(x)的导数 就称为 f ( x ) f(x) f(x)二阶导数 记作 y ′ ′ y'' y′′ (或 d y 2 d 2 x \frac{dy^2}{d^2x} d2xdy2);
以此类推, 可得到n阶导数的定义 记作 y ( n ) y^{(n)} y(n);

相关术语

n阶可导: 如果 f ( x ) f(x) f(x)具有n阶导数, 则称 f ( x ) f(x) f(x)为n阶可导;

0阶导数: 原函数 y = f ( x ) y = f(x) y=f(x) 是他本身的0阶导函数 即 y = y ( 0 ) y = y^{(0)} y=y(0);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值