数学 {高阶导数}
高阶导数
定义
y
=
f
(
x
)
y = f(x)
y=f(x)的导数
f
′
(
x
)
f'(x)
f′(x), 如果仍然可导 则
y
′
=
f
′
(
x
)
y' = f'(x)
y′=f′(x)的导数 就称为
f
(
x
)
f(x)
f(x)的二阶导数 记作
y
′
′
y''
y′′ (或
d
y
2
d
2
x
\frac{dy^2}{d^2x}
d2xdy2);
以此类推, 可得到n阶导数的定义 记作
y
(
n
)
y^{(n)}
y(n);
相关术语
n阶可导: 如果 f ( x ) f(x) f(x)具有n阶导数, 则称 f ( x ) f(x) f(x)为n阶可导;
0阶导数: 原函数 y = f ( x ) y = f(x) y=f(x) 是他本身的0阶导函数 即 y = y ( 0 ) y = y^{(0)} y=y(0);
高阶导数是微积分中的基本概念,表示函数连续求导的结果。对于函数y=f(x),其一阶导数为f(x),二阶导数为f(x)或(d^2y/dx^2),若函数n阶可导,则存在n阶导数。0阶导数即原函数本身。该主题主要探讨函数的连续性和可导性。

被折叠的 条评论
为什么被折叠?



