【递归算法介绍】

什么是递归?

递归是通过将一个问题分解成更小的相似子问题来解决问题的方法。每个子问题都是相同的问题的简化版本,直到达到基本情况或边界情况,然后逐级返回结果。

递归的基本原理

递归算法的基本原理可以概括为以下几个步骤:

  1. 定义基本情况:递归算法必须有一个或多个基本情况,即停止递归的条件。这些条件通常是最简单或最小的问题的情况,可以直接解决而不需要进一步的递归。

  2. 将问题分解:在递归步骤中,问题被分解为一个或多个规模较小且相似的子问题。这通常涉及将原始问题拆分成更小的子问题,并将它们传递给递归函数本身。

  3. 递归调用:递归函数会调用自身来解决子问题。这是递归的关键部分。

  4. 合并结果:当子问题解决后,它们的结果将被合并以解决原始问题。

示例

1. 阶乘函数

def factorial(n):
    # 基本情况
    if n == 0:
        return 1
    # 递归调用
    else:
        return n * factorial(n - 1)

2. Ackermann函数

Ackermann函数是一个著名的递归函数,以其快速增长而闻名,它的定义如下:

A(m, n) = 
    - n + 1, if m = 0
    - A(m - 1, 1), if m > 0 and n = 0
    - A(m - 1, A(m, n - 1)), if m > 0 and n > 0
def ackermann(m, n):
    if m == 0:
        return n + 1
    elif m > 0 and n == 0:
        return ackermann(m - 1, 1)
    elif m > 0 and n > 0:
        return ackermann(m - 1, ackermann(m, n - 1))

3. 全排列

#include <iostream>
#include <vector>
using namespace std;

void permute(vector<int>& nums, int start, vector<vector<int>>& result) {
    if (start == nums.size()) {
        result.push_back(nums);
        return;
    }

    for (int i = start; i < nums.size(); ++i) {
        swap(nums[start], nums[i]);
        permute(nums, start + 1, result);
        swap(nums[start], nums[i]); // 恢复原始顺序
    }
}

int main() {
    // 输入全排列的元素
    vector<int> nums;
    int n;
    cin >> n;
    for (int i = 0; i < n; ++i) {
		nums.push_back(i+1);
	}
    vector<vector<int>> result;
    permute(nums, 0, result);

    // 输出所有全排列
    for (const auto& perm : result) {
        for (int num : perm) {
            cout << num << " ";
        }
        cout << endl;
    }

    return 0;
}

4. 划分

#include <iostream>
#include <vector>

using namespace std;

// 定义一个结构体来表示划分
struct Partition {
    vector<int> parts;
};

void printPartition(const Partition& partition) {
    for (int i = 0; i < partition.parts.size(); ++i) 
    {
        cout << partition.parts[i];
        if (i < partition.parts.size() - 1) {
            cout << "+";
        }
    }
    cout << endl;
}

void generatePartitions(int n, int m, Partition& current) {
    if (n == 0) 
    {
        printPartition(current);
        return;
    }

    if (n < 0 || m == 0) 
    {
        return;
    }
    // 包含m的情况
    current.parts.push_back(m);
    generatePartitions(n - m, m, current);
    current.parts.pop_back();   // 回溯

    // 不包含m的情况
    generatePartitions(n, m - 1, current);
}

int main() 
{
    int n;
    cin >> n;
    Partition current;
    generatePartitions(n, n, current);
    return 0;
}

将一个集合划分为k个子集合,使得每个子集合的元素之和相等。

5. 汉诺塔

汉诺塔(Hanoi)问题是一个经典的递归问题,涉及到将一堆盘子从一个柱子移动到另一个柱子,同时遵守以下规则:

  1. 只能一次移动一个盘子。
  2. 永远不会把一个较大的盘子放在一个较小的盘子之上。
#include <iostream>
using namespace std;

void hanoi(int n, char source, char auxiliary, char destination) {
    if (n == 1) {
        cout << "移动盘子 " << n << " 从 " << source << " 到 " << destination << endl;
        return;
    }
    
    hanoi(n - 1, source, destination, auxiliary);
    cout << "移动盘子 " << n << " 从 " << source << " 到 " << destination << endl;
    hanoi(n - 1, auxiliary, source, destination);
}

int main() {
    int num_disks;
    cin >> num_disks;
    hanoi(num_disks, 'A', 'B', 'C'); // 'A', 'B', 'C' 分别代表三个柱子
    return 0;
}

hanoi 函数接受三个参数:盘子的数量 n,源柱子 source,辅助柱子 auxiliary,和目标柱子 destination。递归的思想是将 n-1 个盘子从源柱子经由辅助柱子移动到目标柱子,然后将第 n 个盘子从源柱子移动到目标柱子,最后将 n-1 个盘子从辅助柱子移动到目标柱子。

6.简单选择排序

简单选择排序是其中一种最简单但也最不高效的排序算法之一。

6.1.简单选择排序的原理

简单选择排序是一种基于比较的排序算法,其基本思想是不断地从未排序的元素中选择最小(或最大)的元素,然后将其放置在已排序部分的末尾。这个过程不断重复,直到所有元素都被排序完毕。

6.2.简单选择排序的步骤

下面是简单选择排序的具体步骤:

  1. 初始状态:将整个待排序的数组分为已排序区间和未排序区间。初始时,已排序区间为空,未排序区间包含所有元素。

  2. 找到最小元素:在未排序区间中找到最小的元素,通常需要遍历整个未排序区间来查找。

  3. 交换元素:将找到的最小元素与未排序区间的第一个元素交换位置,将其放入已排序区间的末尾。

  4. 重复步骤2和步骤3:不断重复步骤2和步骤3,直到未排序区间变为空。此时,已排序区间包含了所有元素,它们按照升序排列。

#include <iostream>
using namespace std;

// 函数:找到数组中的最小元素的索引
int findMinIndex(int arr[], int start, int end) {
    int minIndex = start;
    for (int i = start + 1; i < end; ++i) {
        if (arr[i] < arr[minIndex]) {
            minIndex = i;
        }
    }
    return minIndex;
}

// 递归函数:通过选择排序对数组排序
void recursiveSelectionSort(int arr[], int n, int currentIndex = 0) {
    if (currentIndex == n - 1) {
        // 当前索引达到数组末尾,排序完成
        return;
    }

    // 找到未排序部分的最小元素索引
    int minIndex = findMinIndex(arr, currentIndex, n);

    // 交换最小元素与当前位置元素
    swap(arr[currentIndex], arr[minIndex]);

    // 递归调用,继续排序下一个元素
    recursiveSelectionSort(arr, n, currentIndex + 1);
}

int main() {
    int arr[] = {64, 25, 12, 22, 11};
    int n = sizeof(arr) / sizeof(arr[0]);

    cout << "原始数组:";
    for (int i = 0; i < n; ++i) {
        cout << arr[i] << " ";
    }
    cout << endl;

    recursiveSelectionSort(arr, n);

    cout << "排序后数组:";
    for (int i = 0; i < n; ++i) {
        cout << arr[i] << " ";
    }
    cout << endl;

    return 0;
}

7.冒泡排序

冒泡排序(Bubble Sort)是计算机科学中最简单的排序算法之一,它的原理和工作方式非常直观。

7.1.冒泡排序的原理

冒泡排序是一种比较排序算法,它的基本思想是反复比较相邻的两个元素,如果它们的顺序不正确,就交换它们,直到整个数组都排序完成。这个过程像气泡一样,较大的元素会逐渐“冒泡”到数组的末尾,因此得名冒泡排序。

7.2.冒泡排序的步骤
  1. 比较相邻元素:从数组的第一个元素开始,依次比较相邻的两个元素。

  2. 交换元素位置:如果相邻元素的顺序不正确(例如,前一个元素大于后一个元素),则交换它们的位置。

  3. 一轮结束:完成一轮比较和可能的交换后,最大的元素已经“冒泡”到数组的末尾。

  4. 继续下一轮:重复以上步骤,但不包括已经排序好的末尾元素。每轮排序将下一个最大的元素“冒泡”到合适的位置。

  5. 重复直到排序完成:不断重复步骤1至步骤4,直到整个数组都按照升序排列。

#include <iostream>
using namespace std;

// 辅助函数:将最大元素移动到未排序部分的末尾
void bubbleMaxToEnd(int arr[], int n) {
    if (n == 1) {
        return; // 基本情况:只有一个元素,无需操作
    }

    // 内循环:比较相邻元素,将较大元素向后移动
    for (int i = 0; i < n - 1; ++i) {
        if (arr[i] > arr[i + 1]) {
            swap(arr[i], arr[i + 1]);
        }
    }
}

// 冒泡排序递归函数
void recursiveBubbleSort(int arr[], int n) {
    if (n <= 1) {
        return; // 基本情况:只有一个元素或没有元素,无需排序
    }

    // 将最大元素移动到未排序部分的末尾
    bubbleMaxToEnd(arr, n);

    // 递归调用:对未排序部分继续进行冒泡排序
    recursiveBubbleSort(arr, n - 1);
}

int main() {
    int arr[] = {64, 25, 12, 22, 11};
    int n = sizeof(arr) / sizeof(arr[0]);

    cout << "原始数组:";
    for (int i = 0; i < n; ++i) {
        cout << arr[i] << " ";
    }
    cout << endl;

    recursiveBubbleSort(arr, n);

    cout << "排序后数组:";
    for (int i = 0; i < n; ++i) {
        cout << arr[i] << " ";
    }
    cout << endl;

    return 0;
}

八皇后

在8×8的棋盘上放置八个皇后,以确保它们互不攻击,即没有两个皇后在同一行、同一列或同一斜线上。

8.1.背景

八皇后问题起源于国际象棋,其中皇后是一种强大的棋子,它可以在水平、垂直和斜线方向上移动任意多个格子。这个问题首次由高斯(Carl Friedrich Gauss)在18世纪提出,但直到19世纪才引起广泛关注。八皇后问题代表了一类称为“N皇后问题”的问题,其中N表示要放置的皇后数量,而棋盘的大小可以是N×N。

8.2.解决方法

解决八皇后问题的主要方法之一是使用回溯算法。回溯算法是一种通过尝试不同的可能性来解决问题的方法,如果当前尝试的方法不行,就返回到上一步并尝试其他方法。

  1. 从棋盘的第一行开始,逐行放置皇后,确保每一行只有一个皇后。

  2. 对于每一行,从左到右尝试放置皇后,检查是否与之前的皇后冲突。冲突意味着在同一行、同一列或同一斜线上有另一个皇后。

  3. 如果找到一个可以放置皇后的位置,将皇后放在那里,并继续到下一行。

  4. 如果找不到可行的位置,则回溯到上一行,将之前的皇后重新放置,并继续尝试其他位置。

  5. 重复步骤3和步骤4,直到成功放置八个皇后或确定无解。

  6. 所有皇后成功放置后,记录解决方案,并继续寻找其他解决方案。

#include <iostream>
using namespace std;

const int boardSize = 8; // 棋盘大小

int num = 0; // 解的个数

// 打印棋盘
void printBoard(int board[boardSize][boardSize]) {
    for (int i = 0; i < boardSize; ++i) {
        for (int j = 0; j < boardSize; ++j) {
            cout << (board[i][j] ? "Q" : ".") << " ";
        }
        cout << endl;
    }
}

// 检查在(row, col)放置皇后是否安全
bool isSafe(int board[boardSize][boardSize], int row, int col) {
    // 检查列是否有其他皇后
    for (int i = 0; i < row; ++i) {
        if (board[i][col]) {
            return false;
        }
    }

    // 检查左上到右下的对角线是否有其他皇后
    for (int i = row, j = col; i >= 0 && j >= 0; --i, --j) {
        if (board[i][j]) {
            return false;
        }
    }

    // 检查左下到右上的对角线是否有其他皇后
    for (int i = row, j = col; i >= 0 && j < boardSize; --i, ++j) {
        if (board[i][j]) {
            return false;
        }
    }

    return true;
}

// 递归函数:解决八皇后问题
bool solveNQueens(int board[boardSize][boardSize], int row) {
    if (row == boardSize) {
        // 所有皇后都已放置,找到了一个解决方案
        printBoard(board);
        cout << endl;
        num++;
        return true;
    }

    bool foundSolution = false;
    for (int col = 0; col < boardSize; ++col) {
        if (isSafe(board, row, col)) {
            // 放置皇后
            board[row][col] = 1;

            // 递归尝试下一行
            foundSolution = solveNQueens(board, row + 1) || foundSolution;

            // 回溯
            board[row][col] = 0;
        }
    }

    return foundSolution;
}

int main() {
    int board[boardSize][boardSize] = { 0 }; // 初始化棋盘

    if (!solveNQueens(board, 0)) {
        cout << "无解" << endl;
    }
    cout << "共有" << num << "种解法" << endl;
    return 0;
}

第一归纳法

第一归纳法是一种证明数学命题的方法,通常用于证明对于所有正整数n都成立的陈述。它的基本思想可以概括为以下三个步骤:

  1. 基本情况(Base Case):首先,证明当n等于某个特定正整数时,陈述成立。这个特定的正整数通常是最小的正整数,例如1。

  2. 归纳假设(Inductive Hypothesis):假设当n等于某个正整数k时,陈述也成立,即我们假设第k个情况是正确的。

  3. 归纳步骤(Inductive Step):接下来,我们使用归纳假设来证明当n等于k+1时,陈述仍然成立。这通常涉及将问题从n=k的情况推广到n=k+1的情况。

通过这三个步骤,可以证明陈述对于所有正整数都成立。第一归纳法的关键在于将问题分解成小的部分,并通过递推的方式证明它们的正确性。

第二归纳法

第二归纳法与第一归纳法类似,但更适用于证明一般性的数学命题。它的基本思想可以概括为以下三个步骤:

  1. 基本情况(Base Case):与第一归纳法相同,首先证明陈述对于某个特定情况成立。

  2. 归纳假设(Inductive Hypothesis):假设对于所有n小于等于某个正整数k,陈述都成立。

  3. 归纳步骤(Inductive Step):接下来,使用归纳假设来证明对于n等于k+1的情况,陈述也成立。

第二归纳法的关键在于它不仅仅适用于正整数,还可以用于更一般的情况,例如自然数或其他数学结构。

应用举例

1 + 2 + 3 + . . . + n = n ( n + 1 ) 2 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2} 1+2+3+...+n=2n(n+1)

第一归纳法

  1. 基本情况:当n等于1时,左边是1,右边是 1 ( 1 + 1 ) 2 \frac{1(1+1)}{2} 21(1+1),两边相等。
  2. 归纳假设:假设对于某个正整数k,公式成立,即 1 + 2 + 3 + . . . + k = k ( k + 1 ) 2 1 + 2 + 3 + ... + k = \frac{k(k+1)}{2} 1+2+3+...+k=2k(k+1)
  3. 归纳步骤:我们将左边的和扩展到n=k+1,得到 1 + 2 + 3 + . . . + k + ( k + 1 ) 1 + 2 + 3 + ... + k + (k+1) 1+2+3+...+k+(k+1),然后使用归纳假设,得到 k ( k + 1 ) 2 + ( k + 1 ) \frac{k(k+1)}{2} + (k+1) 2k(k+1)+(k+1),简化后等于 ( k + 1 ) ( k + 2 ) 2 \frac{(k+1)(k+2)}{2} 2(k+1)(k+2),与右边相等。

第二归纳法

  1. 基本情况:同样是n等于1,左边等于1,右边等于 1 ( 1 + 1 ) 2 \frac{1(1+1)}{2} 21(1+1)
  2. 归纳假设:假设对于所有n小于等于k,公式成立。
  3. 归纳步骤:考虑n=k+1的情况,使用归纳假设,我们知道 1 + 2 + 3 + . . . + k = k ( k + 1 ) 2 1 + 2 + 3 + ... + k = \frac{k(k+1)}{2} 1+2+3+...+k=2k(k+1)。现在将它与k+1相加,得到左边的和,然后使用右边的公式 k ( k + 1 ) 2 + ( k + 1 ) \frac{k(k+1)}{2} + (k+1) 2k(k+1)+(k+1),简化后等于 ( k + 1 ) ( k + 2 ) 2 \frac{(k+1)(k+2)}{2} 2(k+1)(k+2),与右边相等。

这两种归纳法都可以成功证明这个数学命题。

如何使用递归

递归算法是许多经典计算机科学问题的解决方法之一,包括树的遍历、图的深度优先搜索等。在使用递归时,确保定义了基本情况以避免无限递归。此外,递归可能不是最高效的解决方案,因此在某些情况下,迭代可能更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

武帝为此

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值