智能体Lagent & AgentLego作业 以使用 Lagent Web Demo。首先输入模型 IP 为 127.0.0.1:23333,1.创建开发机,选择镜像为 Cuda12.2-conda,并选择 GPU 为30% A100。3.安装 Lagent 和 AgentLego以及其他依赖的安装包。并选择插件为 ArxivSearch,最后与模型进行对话。本地ssh连接输入密码时,密码不会显示,输完直接回车便好。5.3 创建并修改direct_use.py文件。5.4 执行direct_use.py文件。5.2 下载mmdet。
OpenCompass笔记 上海人工智能实验室科学家团队正式发布了大模型开源开放评测体系 “司南” (OpenCompass2.0),用于为大语言模型、多模态模型等提供一站式评测服务。本算法库的主要评测对象为语言大模型与多模态大模型。我们以语言大模型为例介绍评测的具体模型类型。
第五节课作业 4.打开vscode终端,创建并修改pipeline_transformer.py。5.运行pipeline_transformer.py文件,使用命令行与模型对话。2.切换终端模式,并创建虚拟环境,安装 lmdeploy。1.创建开发机,选择镜像。
Lagent & AgentLego 智能体应用搭建 描述输入图像识别文本(OCR)视觉问答(VQA)人体姿态估计人脸关键点检测图像边缘提取(Canny)深度图生成生成涂鸦(Scribble)检测全部目标检测给定目标1.创建开发机并配置环境2.安装 Lagent 和 AgentLego3.Lagent:轻量级智能体框架4. AgentLego:组装智能体“乐高”
XTuner 微调 "content": "我是{}的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦".format(name)# xtuner convert pth_to_hf ${配置文件地址} ${权重文件地址} ${转换后模型保存地址}# -p选项意味着如果上级目录不存在也会一并创建,且如果目标文件夹已存在则不会报错。# 创建一个保存转换后 Huggingface 格式的文件夹。# 复制内容到目标文件夹。# 创建版本文件夹并进入,以跟随本教程。# 创建目标文件夹,确保它存在。# 从源码安装 XTuner。
【无标题】 RAG 茴香豆 "mmpose执行提取关键点命令不是分为两步吗,一步是目标检测,另一步是关键点提取,我现在目标检测这部分的代码是demo/topdown_demo_with_mmdet.py demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth 现在我想把这个mmdet的checkpoints换位yolo的,那么应该怎么操作",
轻松玩转书生·浦语大模型趣味 Demo 是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。# 与 studio-conda 等效的配置方案。# save_dir是模型保存到本地的目录。八戒-Chat-1.8B。八戒-Chat-1.8B。# 创建保存模型目录。
第一次作业 四、open compass 2.0思南大模型评测体系,包括评测框架的开发和开源、评测基准社区的建立以及对大模型能力提升的分析。二、英特尔二模型在各种能力评测中的表现,包括语言知识、推理、数学、代码等方面,同时还介绍了模型的应用和数据分析功能。五、英特尔开源模型推理和部署工具的评测和发展趋势,以及智能体框架和多媒体多模态智能体工具箱的使用和开发。大模型的发展历程和特点,其中包括轻量级和重量级模型以及不同能力的模型。语大模型2.0提供不同尺寸和类型的模型,支持多语言和多模态任务。
XTuner 微调 LLM:1.8B第四次作业 寻找 internlm2_1_8b_qlora_alpaca_e3中配置文件,并复制在指定地方。训练时间较长,需耐心等待,训练次数过多便会出现过拟合现象,即无论问题是什么,答案却都是一样。# 进入家目录 (~的意思是 “当前用户的home路径”)# 创建版本文件夹并进入,以跟随本教程。2.创建虚拟环境并下载XTuner。# 拉取 0.1.17 的版本源码。4.下载模型,并寻找目标配置文件。# 从源码安装 XTuner。使用XTuner 内置的。再修改复制文件里的内容。来加速整体的训练过程。