图像中直线和圆的Hough变换研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在计算机视觉领域,特征检测是诸多下游任务(如目标识别、场景理解、三维重建等)的基础。直线和圆作为图像中最基本的几何结构,其准确高效的检测具有至关重要的意义。传统的基于边缘点连接或者模板匹配的方法,往往对噪声、图像畸变和部分遮挡敏感,鲁棒性不足。Hough变换作为一种经典的参数空间投票方法,以其对噪声和部分遮挡的鲁棒性,在直线和圆的检测中展现出显著的优势。本文旨在深入研究图像中直线和圆的Hough变换原理、实现方法及其变体,并探讨其在实际应用中的优缺点与发展方向。

一、 Hough变换的基本原理

Hough变换的核心思想是将图像空间的离散点映射到参数空间,通过参数空间中的峰值来确定图像空间中对应的几何形状。其基本原理可以概括为“点到参数空间的映射,参数空间中的投票与峰值检测”。

1.1 直线Hough变换

1.2 圆形Hough变换

显然,三维参数空间的计算量巨大,这使得基本圆形Hough变换在实际应用中效率较低。

二、 Hough变换的优化与改进

为了提高Hough变换的效率和鲁棒性,研究者们提出了多种优化和改进方法。

2.1 梯度信息的使用

2.2 多尺度Hough变换

对于圆的检测,半径 rr 的范围可能很大。直接对整个半径范围进行离散化会导致参数空间过于庞大。多尺度Hough变换的思想是在不同尺度(即不同的半径范围)上进行Hough变换,并在粗尺度检测到可能的圆后,在细尺度上进行更精确的搜索。这种分层的方法可以有效地降低计算量,尤其是在检测尺寸差异较大的圆时。

2.3 随机Hough变换 (Randomized Hough Transform, RHT)

传统的Hough变换需要对所有边缘点进行投票,计算量与边缘点数量呈线性关系。当边缘点较多时,计算量依然很大。随机Hough变换通过随机选取少量边缘点来减少投票次数。对于直线检测,随机选取两个边缘点就可以确定一条直线,然后检验这条直线上有多少其他边缘点;对于圆检测,随机选取三个边缘点可以确定一个圆,然后检验圆周上是否有足够的其他边缘点。这种方法在边缘点数量较多时能够显著提高效率,但检测结果具有随机性,可能遗漏一些直线或圆。

2.4 快速Hough变换

为了进一步提高Hough变换的速度,研究者们提出了多种快速算法。例如,利用分块技术,将图像分成若干小块,分别进行Hough变换;或者利用哈希表来加速累加器的访问和投票过程。这些方法通过空间划分或数据结构优化来降低计算复杂度。

2.5 Hough变换的变体与泛化

除了直线和圆,Hough变换还可以泛化应用于其他参数化几何形状的检测,如椭圆、二次曲线等。广义Hough变换 (Generalized Hough Transform, GHT) 通过建立形状的参考表,将任意形状的检测转化为参数空间的投票问题。但其对形状的先验知识要求较高,且计算复杂度随形状复杂度的增加而增加。

三、 Hough变换的优缺点分析

Hough变换作为一种经典的特征检测方法,具有以下显著优点:

  • 对噪声和部分遮挡具有鲁棒性:

     Hough变换的投票机制使得单个噪声点或被遮挡部分的边缘点不会对最终检测结果产生决定性影响。只要有足够多的边缘点位于同一条直线或圆上,就能在参数空间形成明显的峰值。

  • 适用于检测离散的特征点:

     Hough变换不需要边缘点之间的连续性,只需要边缘点位于待检测几何形状上即可进行投票。

  • 易于并行计算:

     Hough变换的投票过程可以在不同的处理器上并行进行,从而提高计算效率。

然而,Hough变换也存在一些缺点:

  • 计算量大:

     尤其是对于多参数的几何形状(如圆、椭圆),参数空间的维度较高,导致计算量巨大,需要大量的内存来存储累加器。

  • 参数空间离散化误差:

     参数空间的离散化会导致检测结果存在一定的误差,分辨率越高,计算量越大。

  • 难以区分相似形状:

     当图像中存在相似的直线或圆时,其在参数空间的峰值可能靠得很近,难以区分。

  • 对图像对比度和边缘质量敏感:

     如果图像对比度较低或者边缘模糊,边缘检测效果不佳,将直接影响Hough变换的检测结果。

四、 实际应用与发展方向

Hough变换在图像处理和计算机视觉领域有着广泛的应用,例如:

  • 直线检测:

     道路检测、建筑轮廓提取、文档扫描中的直线矫正等。

  • 圆检测:

     硬币识别、瞳孔检测、物体识别中的圆形特征提取等。

  • 形状识别:

     利用广义Hough变换进行特定形状的检测与识别。

尽管存在一些缺点,但Hough变换作为一种经典且有效的特征检测方法,仍在不断发展和改进。未来的研究方向可以包括:

  • 更高效的参数空间离散化和投票方法:

     探索基于机器学习或数据驱动的方法来优化参数空间的划分和投票过程,减少计算量。

  • 结合其他特征进行联合检测:

     将Hough变换与其他特征(如纹理、颜色)相结合,提高检测的准确性和鲁棒性。

  • 基于深度学习的Hough变换:

     探索利用深度学习模型来模拟或改进Hough变换的投票过程,实现更快速、更精确的特征检测。

  • 应用于三维空间中的直线和圆检测:

     将Hough变换的思想扩展到三维点云数据中,实现三维直线和圆柱的检测。

结论

图像中直线和圆的Hough变换是一种经典且有效的参数空间投票方法,其对噪声和部分遮挡的鲁棒性使其在多种应用中展现出优越性。通过深入研究Hough变换的基本原理、优化与改进方法,我们可以更好地理解和应用这一技术。虽然Hough变换存在计算量大等缺点,但随着技术的不断发展和与其他方法的结合,其在图像特征检测领域的应用前景仍然广阔,并将在未来的计算机视觉研究中继续发挥重要作用。

⛳️ 运行结果

🔗 参考文献

[1] 代勤,王延杰,韩广良.基于改进Hough变换和透视变换的透视图像矫正[J].液晶与显示, 2012, 27(4).DOI:10.3788/YJYXS20122704.0552.

[2] 唐佳林,王镇波,张鑫鑫.基于霍夫变换的直线检测技术[J].科技信息, 2011(14):2.DOI:CNKI:SUN:KJXX.0.2011-14-026.

[3] 董尧培,王景芹,崔玉龙.基于HSV色彩空间和Hough变换的铝锭在线测厚方法[J].现代电子技术, 2020, 43(5):6.DOI:CNKI:SUN:XDDJ.0.2020-05-012.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值