自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(47)
  • 收藏
  • 关注

原创 第四章 Linux实用操作

Linux系统很多软件(内置或第三方)均支持使用systemctl命令控制:启动、停止、开机自启能够被systemctl管理的软件,一般也称之为:服务在系统中创建软链接,可以将文件、文件夹链接到其它位置。

2025-08-16 09:39:22 1134

原创 第三章 Linux用户和权限

无论是Windows、MacOS、Linux均采用多用户的管理模式进行权限管理。•在Linux系统中,拥有最大权限的账户名为:root(超级管理员)•而在前期,我们一直使用的账户是普通的用户:itheimaroot用户拥有最大的系统操作权限,而普通用户在许多地方的权限是受限的。Linux系统中可以:•配置多个用户•配置多个用户组•用户可以加入多个用户组中Linux中关于权限的管控级别有2个级别,分别是:•针对用户的权限控制•针对用户组的权限控制。

2025-08-16 09:35:06 854

原创 第二章 Linux基础命令

学习Linux,本质上是学习在命令行下熟练使用Linux的各类命令命令行(FinalShell)即Linux终端,可以提供字符化的页面供命令执行即Linux终端(Terminal),是一种命令提示符页面,以纯字符的形式操作系统,可以使用各种字符化命令对系统发出操作指令。命令即Linux操作指令,是系统内置的程序,可以以字符化的形式去使用即Linux程序,一个命令就是一个Linux程序,命令没有图形化页面,可以在命令行(终端)里面提供字符化的反馈。

2025-08-16 09:32:23 886

原创 机器学习中Precision(查准率)和Recall(查全率)

TP(True Positive):真正例(实际为正且预测为正)FP(False Positive):假正例(实际为负但预测为正)FN(False Negative):假负例(实际为正但预测为负)

2025-07-16 21:42:45 680

原创 机试 | 全排列

first 和 last:双向迭代器,定义了要排列的元素范围。comp:比较函数对象,用于定义元素的排序方式。可以看到六次排列后 ,回到了原始的序列,五次排列的时候返回值为0,再次排列会进入到下一个轮回。: 如果存在下一个排列,返回 true;否则返回 false,并将范围重置为字典序的第一个排列。

2025-06-06 11:49:44 160

原创 机试 | STL | string | 统计单词数

STL | string

2025-05-30 11:08:05 421

原创 机试 | STL | string | 斯诺登的密码

STL 斯诺登的密码

2025-05-27 09:28:49 291

原创 机试 | STL | string | 文字处理软件

string

2025-05-26 22:06:34 214

原创 机试 | vector/array Minimum Glutton C++

机试算法

2025-05-26 17:16:21 440

原创 AI学习博文链接

ai学习资料整理

2025-05-15 18:38:04 460

原创 10.为什么Python的位置参数必须在关键字参数之前

位置参数和关键字参数的深度理解

2025-05-03 00:26:47 564

原创 Deep Norm

Deep Norm 是一种基于归一化的深度学习模型优化方法,其思路是通过在深度神经网络中引入多层归一化操作,以改善模型的训练和泛化性能。Deep Norm 的主要思想是在网络的每一层之间插入归一化层,以减小输入数据的分布差异,从而加速收敛并提高模型的泛化能力。与传统的批归一化(Batch Normalization)不同,Deep Norm 在每一层都进行归一化,而不是仅在特定层进行。Deep Norm 的具体步骤如下:输入数据:将输入数据传递给网络的第一层。

2025-04-21 11:52:42 1233

原创 Algorithm-3 链表 合并两个排序的链表

输入两个递增的链表,单个链表的长度为n,合并两个链表使新链表中的节点仍然是递增排序的。数据范围: 0≤n≤1000,−1000≤节点值≤1000。要求:空间复杂度 O(1),时间复杂度 O(n)题目来源:牛客TOP101。

2025-03-10 14:06:43 217

原创 Algorithm-2 链表 链表内指定区间反转

题目来源:牛客 TOP101。

2025-03-10 12:01:12 143

原创 Algorithm-1 链表 反转链表

题目来源:牛客 TOP101。

2025-03-10 10:55:40 238

原创 李宏毅深度学习--如何做到鱼与熊掌兼得

只要有足够多的neuron,就可以产生任何形状的piecewis function。在产生同样的function的时候,矮胖的网络比高瘦的网络需要更多的参数量。获得分段的function,分的段越多,得到的函数就越接近真实的。兼得也就是:在比较少的参数量的情况下得到较低的Loss。同样的参数量的时候,把一层的结点数变多,不如把网络变深。exponentially:需要多的参数量的意思。每个neuron产生一个阶梯型的function。为什么我们要深层网络,而不是扩展网络的宽度。网络越深,错误率越低。

2025-03-07 21:27:11 424

原创 如何在Github上面上传本地文件夹

打开自己的Github,创建SSH密钥,Title随便取,类型选择默认即可。找到文件夹下面的pub文件,可以选择使用NotePad或者记事本打开。把里面的内容复制到Github的key下面,点击Add SSH key。最后是推送指令,推送到指定仓库的master分支下。刷新Github以后可以发现已经成功上传了。

2025-03-02 23:17:06 1128

原创 9.Python基础综合案例

JSON以及pyecharts

2025-02-19 22:01:50 152

原创 7.Python异常、模块与包

Python异常、模块与包

2025-02-18 23:01:43 315

原创 8.Python面向对象

Python面向对象

2025-02-17 20:28:31 609

原创 4.Python文件操作

Python文件操作

2025-02-17 13:53:35 353

原创 6.Python函数进阶

python函数进阶

2025-02-16 20:00:54 233

原创 Python数据容器

1。

2025-02-12 20:45:42 649

原创 5.Python函数

Python函数

2025-02-11 22:59:17 199

原创 3.Python循环语句

Python循环语句

2025-02-11 22:57:44 418

原创 2.Python判断语句

Python判断语句

2025-02-09 23:33:46 361

原创 1.Python解释器和Python基础语法

Python解释器与Python基础语法

2025-02-06 14:02:47 661

原创 制作数据集

在标注的时候,最后一个点要首尾相连。完成后会弹出一个窗口,在窗口内输入标签,确认后一幅图像就标注完成啦。这样便会在保存目录中生成标签的。刚刚安装的东西就在这个目录下面,我的是D:\anaconda3\envs\cv_env\Scripts。随便把png格式的图片的后缀名改为jpg造成的。Labelme是一个用于图像标注的。工具,可以实现图像标注、

2024-12-05 17:53:29 718

原创 6 操作系统--内存(2)

进程的地址空间:按照程序自身的逻辑关系划分为若干个段,每个段都有一个段名(在低级语言中,程序员使用段名来编程),每段从0开始编址内存分配规则:以段为单位进行分配,每个段在内存中占据连续空间,但各段之间可以不相邻分段系统的逻辑地址结构由段号(段名)和段内地址(段内偏移量)所组成。段号的位数决定了每个进程最多可以分为几个段段内地址位数决定了每个段的最大长度是多少程序分为多个段,各段离散地装入内存,为了保证程序能正常运行,就必须能从物理内存中找到各个逻辑段的存放位置,为此,需为每个进程建立一张段映射表,简称"

2024-11-28 22:51:59 1581

原创 5 操作系统--死锁

不能消除所有边可以消除所有边。

2024-11-16 17:41:50 331

原创 3 操作系统--进程同步与进程通信

P0把turn设为1,P1把turn设为0,表示自己优先想让对方使用临界资源被阻塞的P2和P3已经执行过wait,下次被唤醒的时候,并且获得了CPU,直接从开始使用打印机执行,信号量的value值不会再被减一。mutex:互斥;互斥锁;互斥体;互斥对象;互斥量mutex:代表进入临界区的名额,名额还有剩余的话就可以顺利进入临界区。P,V操作:简单理解为加一减一实现互斥在同一个进程中进行一对PV操作实现同步是在其中一个进程中执行P,另一个进程中执行V。

2024-11-16 17:34:31 1121

原创 4 操作系统--进程调度

进程在访问临界区资源的时候会进行上锁,阻止其他进程访问普通临界区访问的临界资源不会直接影响到操作系统内核的管理工作,因此在访问普通临界区时可以进行调度与切换o地址指令:永远不需要访问寄存器等,减少能耗① FCFS适合长进程,不利于短进程,短进程等待时间和周转时间过长。② FCFS有利于CPU繁忙型(如科学计算)进程调度,而不利于I/O繁忙型(如事务处理)进程调度。(1)时间片大小为2(2)时间片大小为5。

2024-11-16 17:32:37 699

原创 Hadoop学习 第四章 Hive

如果让您设计Hive这款软件,要求能够实现1.用户只编写sql语句2.Hive自动将sql转换MapReduce程序并提交运行3.处理位于HDFS上的结构化数据。如何实现?

2024-11-09 17:03:36 1270 1

原创 Hadoop学习 第三章 分布式计算和分布式资源调度

1. 什么是计算、分布式计算?•计算:对数据进行处理,使用统计分析等手段得到需要的结果•分布式计算:多台服务器协同工作,共同完成一个计算任务2. 分布式计算常见的2种工作模式•分散->汇总 (MapReduce就是这种模式)•中心调度->步骤执行 (大数据体系的Spark、Flink等是这种模式)MapReduce概述MapReduce是“分散->汇总”模式的分布式计算框架,可供开发人员开发相关程序进行分布式数据计算。MapReduce提供了2个编程接口:•Map•Reduce其中。

2024-11-09 17:02:15 1182

原创 Hadoop学习 第二章 HDFS

1. 什么是HDFS?HDFS全称:Hadoop Distributed File System是Hadoop三大组件(HDFS、MapReduce、YARN)之一可在多台服务器上构建集群,提供分布式数据存储能力2. HDFS中的架构角色有哪些?NameNode:主角色,管理HDFS集群和DataNode角色DataNode:从角色,负责数据的存储SecondaryNameNode:辅助角色,协助NameNode整理元数据。

2024-11-09 17:00:58 1650

原创 Hadoop学习--第一章 Hello大数据分布式

从海量的高增长、多类别、低信息密度的数据中挖掘出高质量的结果可以实现大数据核心工作的存储和计算(另一个是传输)

2024-11-09 16:58:24 485

原创 2 操作系统--进程

涉及到如在同一块区域写东西造成数据覆盖,所以各个进程对共享空间的访问应该是互斥的同一个进程中的两个线程可以执行同一份代码,也可以执行不同的代码① FCFS适合长进程,不利于短进程,短进程等待时间和周转时间过长。② FCFS有利于CPU繁忙型(如科学计算)进程调度,而不利于I/O繁忙型(如事务处理)进程调度。(1)时间片大小为2(2)时间片大小为5短进程优先、优先权高者优先都需要估计进程的预期执行时间,如果估计不准确, 将会影响进程调度结果和系统性能。

2024-11-08 23:24:24 1504

原创 6 操作系统--内存(1)

页框和页帧指的是内存在物理上被划分为的一个一个的部分页和页面指的是进程在逻辑上被划分为的一个一个的部分进一步缓和CPU与存储设备之间速度的矛盾10位页号刚好可以表示0-1023一个进程对应一个段表,每个段会对应一个页表,所以一个进程会对应多个页表。

2024-11-08 23:17:28 1130

原创 7 操作系统--文件

顺序访问:先要访问块0,才能找到块1直接访问(随机访问):可以直接访问块1,不需要先访问其他块用软链接访问文件通过硬链接访问要慢文件信息缓冲区:如索引结构,就需要把索引表调入到这个区。

2024-11-08 23:10:42 434

原创 8 操作系统--I/O

5.1.1 I/O设备的概念和分类什么是I/O设备?I/O设备的分类--按使用特性I/O设备的分类--按传输速率I/O设备的分类--按信息交换的单位总结5.1.2 I/O控制器I/O设备的机械部件I/O控制器(I/O设备的电子部件)I/O控制器的组成内存映像I/O vs 寄存器独立编址总结5.1.3 I/O控制方式程序直接控制方式中断驱动方式DMA方式

2024-11-08 23:01:48 530

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除