一个旅游景点,如果被带火了的话,就被称为“网红点”。大家来网红点游玩,俗称“打卡”。在各个网红点打卡的快(省)乐(钱)方法称为“攻略”。你的任务就是从一大堆攻略中,找出那个能在每个网红点打卡仅一次、并且路上花费最少的攻略。
输入格式:
首先第一行给出两个正整数:网红点的个数 N(1<N≤200)和网红点之间通路的条数 M。随后 M 行,每行给出有通路的两个网红点、以及这条路上的旅行花费(为正整数),格式为“网红点1 网红点2 费用”,其中网红点从 1 到 N 编号;同时也给出你家到某些网红点的花费,格式相同,其中你家的编号固定为 0
。
再下一行给出一个正整数 K,是待检验的攻略的数量。随后 K 行,每行给出一条待检攻略,格式为:
n V1 V2 ⋯ Vn
其中 n(≤200) 是攻略中的网红点数,Vi 是路径上的网红点编号。这里假设你从家里出发,从 V1 开始打卡,最后从 Vn 回家。
输出格式:
在第一行输出满足要求的攻略的个数。
在第二行中,首先输出那个能在每个网红点打卡仅一次、并且路上花费最少的攻略的序号(从 1 开始),然后输出这个攻略的总路费,其间以一个空格分隔。如果这样的攻略不唯一,则输出序号最小的那个。
题目保证至少存在一个有效攻略,并且总路费不超过 109。
输入样例:
6 13
0 5 2
6 2 2
6 0 1
3 4 2
1 5 2
2 5 1
3 1 1
4 1 2
1 6 1
6 3 2
1 2 1
4 5 3
2 0 2
7
6 5 1 4 3 6 2
6 5 2 1 6 3 4
8 6 2 1 6 3 4 5 2
3 2 1 5
6 6 1 3 4 5 2
7 6 2 1 3 4 5 2
6 5 2 1 4 3 6
输出样例:
3
5 11
样例说明:
第 2、3、4、6 条都不满足攻略的基本要求,即不能做到从家里出发,在每个网红点打卡仅一次,且能回到家里。所以满足条件的攻略有 3 条。
第 1 条攻略的总路费是:(0->5) 2 + (5->1) 2 + (1->4) 2 + (4->3) 2 + (3->6) 2 + (6->2) 2 + (2->0) 2 = 14;
第 5 条攻略的总路费同理可算得:1 + 1 + 1 + 2 + 3 + 1 + 2 = 11,是一条更省钱的攻略;
第 7 条攻略的总路费同理可算得:2 + 1 + 1 + 2 + 2 + 2 + 1 = 11,与第 5 条花费相同,但序号较大,所以不输出。
这道题要求我们验证多个旅游攻略的有效性,并找出满足条件且总费用最低的攻略。有效攻略必须满足以下两个条件:
- 每个网红点恰好访问一次:路径必须覆盖所有网红点,且无重复。
- 路径连通且总费用最低:从家出发,按顺序访问所有点后回家,路径必须存在且总费用最小。
思路分析
-
数据存储:
- 使用邻接矩阵
cost
存储各点之间的费用,其中cost[u][v]
表示点u
到v
的费用。若两点间无通路,费用为0。
- 使用邻接矩阵
-
攻略有效性检查:
- 点数匹配:攻略中的点数必须等于网红点总数
N
。 - 无重复访问:通过
visited
数组标记访问状态,确保每个点仅访问一次。 - 全覆盖检查:遍历所有网红点,确保每个点都被访问到。
- 点数匹配:攻略中的点数必须等于网红点总数
-
费用计算:
- 从家(0)出发,依次访问路径中的每个点,最后回家。
- 每一步检查路径是否存在(费用非0),总费用包含家到起点、中间路径和终点回家的费用。
-
最优解选择:
- 维护最小费用和对应的攻略序号,若费用相同,选择序号较小的。
完整代码:
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 205;
int main() {
int N, M;
cin >> N >> M;
int cost[MAX_N][MAX_N] = {0};
for (int i = 0; i < M; ++i) {
int u, v, c;
cin >> u >> v >> c;
cost[u][v] = c;
cost[v][u] = c;
}
int K;
cin >> K;
int valid_count = 0;
int min_cost = 1e9;
int best_idx = -1;
for (int idx = 1; idx <= K; ++idx) {
int n;
cin >> n;
vector<int> path(n);
for (int i = 0; i < n; ++i) {
cin >> path[i];
}
if (n != N) continue;
vector<bool> visited(N + 1, false);
bool valid = true;
for (int v : path) {
if (v < 1 || v > N || visited[v]) {
valid = false;
break;
}
visited[v] = true;
}
if (valid) {
for (int i = 1; i <= N; ++i) {
if (!visited[i]) {
valid = false;
break;
}
}
}
if (!valid) continue;
int total = 0;
int current = 0;
int next = path[0];
if (cost[current][next] == 0) continue;
total += cost[current][next];
current = next;
for (int i = 1; i < n; ++i) {
next = path[i];
if (cost[current][next] == 0) {
valid = false;
break;
}
total += cost[current][next];
current = next;
}
if (!valid) continue;
if (cost[current][0] == 0) continue;
total += cost[current][0];
valid_count++;
if (total < min_cost || (total == min_cost && idx < best_idx)) {
min_cost = total;
best_idx = idx;
}
}
cout << valid_count << endl;
cout << best_idx << " " << min_cost << endl;
return 0;
}