1-7 网红点打卡攻略

一个旅游景点,如果被带火了的话,就被称为“网红点”。大家来网红点游玩,俗称“打卡”。在各个网红点打卡的快(省)乐(钱)方法称为“攻略”。你的任务就是从一大堆攻略中,找出那个能在每个网红点打卡仅一次、并且路上花费最少的攻略。

输入格式:

首先第一行给出两个正整数:网红点的个数 N(1<N≤200)和网红点之间通路的条数 M。随后 M 行,每行给出有通路的两个网红点、以及这条路上的旅行花费(为正整数),格式为“网红点1 网红点2 费用”,其中网红点从 1 到 N 编号;同时也给出你家到某些网红点的花费,格式相同,其中你家的编号固定为 0

再下一行给出一个正整数 K,是待检验的攻略的数量。随后 K 行,每行给出一条待检攻略,格式为:

n V1​ V2​ ⋯ Vn​

其中 n(≤200) 是攻略中的网红点数,Vi​ 是路径上的网红点编号。这里假设你从家里出发,从 V1​ 开始打卡,最后从 Vn​ 回家。

输出格式:

在第一行输出满足要求的攻略的个数。

在第二行中,首先输出那个能在每个网红点打卡仅一次、并且路上花费最少的攻略的序号(从 1 开始),然后输出这个攻略的总路费,其间以一个空格分隔。如果这样的攻略不唯一,则输出序号最小的那个。

题目保证至少存在一个有效攻略,并且总路费不超过 109。

输入样例:

6 13
0 5 2
6 2 2
6 0 1
3 4 2
1 5 2
2 5 1
3 1 1
4 1 2
1 6 1
6 3 2
1 2 1
4 5 3
2 0 2
7
6 5 1 4 3 6 2
6 5 2 1 6 3 4
8 6 2 1 6 3 4 5 2
3 2 1 5
6 6 1 3 4 5 2
7 6 2 1 3 4 5 2
6 5 2 1 4 3 6

输出样例:

3
5 11

样例说明:

第 2、3、4、6 条都不满足攻略的基本要求,即不能做到从家里出发,在每个网红点打卡仅一次,且能回到家里。所以满足条件的攻略有 3 条。

第 1 条攻略的总路费是:(0->5) 2 + (5->1) 2 + (1->4) 2 + (4->3) 2 + (3->6) 2 + (6->2) 2 + (2->0) 2 = 14;

第 5 条攻略的总路费同理可算得:1 + 1 + 1 + 2 + 3 + 1 + 2 = 11,是一条更省钱的攻略;

第 7 条攻略的总路费同理可算得:2 + 1 + 1 + 2 + 2 + 2 + 1 = 11,与第 5 条花费相同,但序号较大,所以不输出。

这道题要求我们验证多个旅游攻略的有效性,并找出满足条件且总费用最低的攻略。有效攻略必须满足以下两个条件:

  1. ​每个网红点恰好访问一次​​:路径必须覆盖所有网红点,且无重复。
  2. ​路径连通且总费用最低​​:从家出发,按顺序访问所有点后回家,路径必须存在且总费用最小。 

思路分析

  1. ​数据存储​​:

    • 使用邻接矩阵 cost 存储各点之间的费用,其中 cost[u][v] 表示点 u 到 v 的费用。若两点间无通路,费用为0。
  2. ​攻略有效性检查​​:

    • ​点数匹配​​:攻略中的点数必须等于网红点总数 N
    • ​无重复访问​​:通过 visited 数组标记访问状态,确保每个点仅访问一次。
    • ​全覆盖检查​​:遍历所有网红点,确保每个点都被访问到。
  3. ​费用计算​​:

    • 从家(0)出发,依次访问路径中的每个点,最后回家。
    • 每一步检查路径是否存在(费用非0),总费用包含家到起点、中间路径和终点回家的费用。
  4. ​最优解选择​​:

    • 维护最小费用和对应的攻略序号,若费用相同,选择序号较小的。

 完整代码:

#include <bits/stdc++.h>
using namespace std;

const int MAX_N = 205;

int main() {
    int N, M;
    cin >> N >> M;
    int cost[MAX_N][MAX_N] = {0};

    for (int i = 0; i < M; ++i) {
        int u, v, c;
        cin >> u >> v >> c;
        cost[u][v] = c;
        cost[v][u] = c;
    }

    int K;
    cin >> K;
    int valid_count = 0;
    int min_cost = 1e9;
    int best_idx = -1;

    for (int idx = 1; idx <= K; ++idx) {
        int n;
        cin >> n;
        vector<int> path(n);
        for (int i = 0; i < n; ++i) {
            cin >> path[i];
        }

        if (n != N) continue;

        vector<bool> visited(N + 1, false);
        bool valid = true;
        for (int v : path) {
            if (v < 1 || v > N || visited[v]) {
                valid = false;
                break;
            }
            visited[v] = true;
        }

        if (valid) {
            for (int i = 1; i <= N; ++i) {
                if (!visited[i]) {
                    valid = false;
                    break;
                }
            }
        }

        if (!valid) continue;

        int total = 0;
        int current = 0;
        int next = path[0];
        if (cost[current][next] == 0) continue;
        total += cost[current][next];
        current = next;

        for (int i = 1; i < n; ++i) {
            next = path[i];
            if (cost[current][next] == 0) {
                valid = false;
                break;
            }
            total += cost[current][next];
            current = next;
        }

        if (!valid) continue;

        if (cost[current][0] == 0) continue;
        total += cost[current][0];

        valid_count++;
        if (total < min_cost || (total == min_cost && idx < best_idx)) {
            min_cost = total;
            best_idx = idx;
        }
    }

    cout << valid_count << endl;
    cout << best_idx << " " << min_cost << endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值