概率 + 统计 大数定律与中心极限定理(五)

大数定律

切比雪夫不等式

设随机变量X具有数学期望E(X)=\mu,方差D(X) = \sigma^2,则对于任意正数\epsilon,有不等式

      \begin{aligned} &P\{|X-E(X)| \geqslant \epsilon\} \leqslant \frac{\sigma^2}{\epsilon^2}\\ or \ &P\{|X-E(X)|< \epsilon\} \geqslant 1 - \frac{\sigma^2}{\epsilon^2} \end{aligned}

由切比雪夫不等式可以看出,若\sigma越小,则事件\{|X-E(X)|< \epsilon\}的概率越大,即随机变量X 集中在期望附近的可能性越大.

大数定律的客观背景

Y_1,Y_2,\cdots,Y_n,\cdots是一个随机变量序列,a是一个常数,若对于任意正数\epsilon,有\lim_{n\rightarrow \infty}P\{|Y_n-a| < \epsilon\}=1,则称序列Y_1,Y_2,\cdots,Y_n,\cdots依概率收敛于a,记作Y_n \overset{P}{\rightarrow} a

性质:设X_n \overset{P}{\rightarrow} aY_n \overset{P}{\rightarrow} b,又设函数g(X,Y)在点(a,b)连续,则g(X_n,Y_n) \overset{P}{\rightarrow} g(a,b)

切比雪夫大数定律:

X_1,X_2,\cdots,X_n,\cdots是一个随机变量序列,如果存在常数C,使得D(X_k) \leqslant C(k=1,2,\cdots),则对于任意正数\epsilon\lim_{n \rightarrow \infty}P\{|\frac{1}{n}\sum_{k=1}^nX_k - \frac{1}{n}\sum_{k=1}^nE(X_k)| < \epsilon\} = 1,也就是说\frac{1}{n}\sum_{k=1}^nX_k \overset{P}{\rightarrow} \frac{1}{n}\sum_{k=1}^nE(X_k)

贝努利大数定律

n_A 是n次独立重复试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意任意正数\epsilon,有

       \begin{aligned} &\lim_{n \rightarrow \infty}P\{|\frac{n_A}{n}| < \epsilon\} = 1 \\ or \ &\lim_{n \rightarrow \infty}P\{|\frac{n_A}{n}| \geqslant \epsilon\} = 0 \end{aligned},也就是说\frac{n_A}{n} \overset{P}{\rightarrow} p

在实际应用中,当试验次数很大时,就可以用事件的频率来代替事件的概率。

辛钦大数定律     

X_1,X_2,\cdots,X_n,\cdots相互独立服从同一分布的随机变量序列,且具有数学期望E(X_k)=\mu (k=1,2,\cdots)。则对于任意正数\epsilon,有\lim_{n \rightarrow \infty}P\{|\frac{1}{n}\sum_{k=1}^nX_k - \mu| < \epsilon\} = 1,也就是说\frac{1}{n}\sum_{k=1}^nX_k \overset{P}{\rightarrow} \mu

中心极限定理

中心极限定理的客观背景:在客观实际中,许多随机变量是由大量的相互独立的随机因素的综合影响所形成的。而其中每一个别因素所起的作用都是微小的。这样的随机变量往往近似地服从正态分布!

中心极限定理

定理1独立同分布情形下的中心极限定理)设随机变量X_1,X_2,\cdots,X_n,\cdots相互独立服从同一分布具有数学期望和方差E(X_k) = \mu, D(X_k) = \sigma^2(k=1,2,\cdots),则随机变量值和\sum_{k=1}^nX_k的标准化变量Y_n = \frac{\sum_{k=1}^nX_k - n \mu}{\sqrt{n}\sigma}的分布函数F_n(x)对于任意x满足\lim_{n \rightarrow \infty}F_n(x) = \lim_{n \rightarrow \infty}P\{ \frac{\sum_{k=1}^nX_k - n \mu}{\sqrt{n}\sigma}\leqslant x\}=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-t^2/2}dt = \varnothing(x)

定理2(德莫佛-拉普拉斯中心极限定理): 设随机变量(\Lambda _n, n =1,2,\cdots)服从参数n,p(0<p<1)的二项分布,则对任意x,有

         \lim_{n \rightarrow \infty}P\{ \frac{\Lambda_n - n p}{\sqrt{np(1-p)}}\leqslant x\}=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-t^2/2}dt = \varnothing(x)

定理表明:二项分布的极限分布是正态分布,即

定理3(李雅普诺夫中心极限定理)设随机变量X_1,X_2,\cdots,X_n,\cdots相互独立,具有数学期望和方差E(X_k) = \mu_k, D(X_k) = \sigma_k^2(k=1,2,\cdots),记B_n^2 = \sum_{k=1}^{n}\sigma_k^2,若存在正数\delta,使得当n\rightarrow +\infty时,

\frac{1}{B_n^{2+\delta}}\sum_{k=1}^n E\{|X_k - \mu_k|^{2+\delta}\} \rightarrow 0,则随机变量值和\sum_{k=1}^nX_k的标准化量Z_n = \frac{\sum_{k=1}^nX_k - E(\sum_{k=1}^nX_k)}{\sqrt{D(\sum_{k=1}^nX_k)}}=\frac{\sum_{k=1}^nX_k-\sum_{k=1}^n\mu_k}{B_n}的分布函数F_n(x)对于任意x,满足lim_{n\rightarrow \infty}F_n(x) =\{\frac{\sum_{k=1}^nX_k-\sum_{k=1}^n\mu_k}{B_n} \leqslant x\}=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-t^2/2}dt = \varnothing(x)

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值