【论文笔记】Aspect-level Sentiment Analysis using AS-Capsules

本文在RNN-Capsule的基础上设计了AS-Capsules模型,用于Aspect-level情感分类。RNN-Capsule的每个胶囊对应不同sentiment category,AS-Capsule的每个胶囊对应不同aspect category。
Aspect-level情感分类一般分为两个步骤,首先确定一段文本里有几个aspect,然后再判断每个aspect的情感极性,这样会不可避免地造成错误的叠加。事实上,情感分类和aspect分类是紧密联系的。本文的模型充分考虑到了这一点,通过共享多个模块使得不同胶囊之间可以进行信息交流,取得了不错的效果。

模型结构

在这里插入图片描述
模型包括:

  • an attribute:aspect category。
  • a state:分为“active”和“inactive”,取决于aspect probability。训练时,当某一aspect出现在输入文本即为active;测试时当aspect probability大于0.5时设为active。
  • a capsule embedding:训练中学习到的胶囊的向量表示。
  • four modules:aspect representation module、 aspect probability module、sentiment representation module、和sentiment distribution module。

文本先由RNN编码成向量,再输入到代表不同aspect的capsule中处理,最后输入到Analyzer中。Analyzer是指训练目标策略,它能够利用aspect detection和aspect-level 情感分类之间的相关性来提高性能。
单个胶囊结构:
在这里插入图片描述
每个胶囊由以下四个模块组成:

  • aspect representation module :学习 aspect 向量表示 r a r_{a} ra
  • aspect probability module: 基于 r a r_{a} ra
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值