本文在RNN-Capsule的基础上设计了AS-Capsules模型,用于Aspect-level情感分类。RNN-Capsule的每个胶囊对应不同sentiment category,AS-Capsule的每个胶囊对应不同aspect category。
Aspect-level情感分类一般分为两个步骤,首先确定一段文本里有几个aspect,然后再判断每个aspect的情感极性,这样会不可避免地造成错误的叠加。事实上,情感分类和aspect分类是紧密联系的。本文的模型充分考虑到了这一点,通过共享多个模块使得不同胶囊之间可以进行信息交流,取得了不错的效果。
模型结构

模型包括:
- an attribute:aspect category。
- a state:分为“active”和“inactive”,取决于aspect probability。训练时,当某一aspect出现在输入文本即为active;测试时当aspect probability大于0.5时设为active。
- a capsule embedding:训练中学习到的胶囊的向量表示。
- four modules:aspect representation module、 aspect probability module、sentiment representation module、和sentiment distribution module。
文本先由RNN编码成向量,再输入到代表不同aspect的capsule中处理,最后输入到Analyzer中。Analyzer是指训练目标策略,它能够利用aspect detection和aspect-level 情感分类之间的相关性来提高性能。
单个胶囊结构:

每个胶囊由以下四个模块组成:
- aspect representation module :学习 aspect 向量表示 r a r_{a} ra。
- aspect probability module: 基于 r a r_{a} ra

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



