Python金融大数据分析-BSM、Term Struc、Ho-Lee 与Vasicek模型路径仿真

这一篇的代码是之前蒙特卡洛仿真改过来的,大家都知道,用MC绘制路径是一件很好玩的事情。在学习FRM的过程中,遇到了几种利率模型,Term Structure、Ho-Lee与Vasicek。         这里我们不讨论BSM,只是作为程序的一部分而已,后面仿真也并不用到。      ...

2016-12-29 21:47:30

阅读数:3373

评论数:0

Python使用Hadoop进行词频统计

今天,我们利用python编写一个MapReduce程序,程序的目的还是百年不变的计算单词个数,也就是WordCunt。 所谓mapreduce其实就是先分散计算后综合处理计算结果。 首先我们来看一下map部分的代码。 #!/usr/bin/env python import sy...

2016-12-25 20:05:06

阅读数:1957

评论数:0

Hadoop与Spark以及那些坑

这两天在搭建Hadoop与Spark的平台,要求是能够运行Spark,并且用python编程。笔者也不打算写一个很详细的细节教程,简单做一个笔记blog。 1.选择         笔者一开始是在虚拟机上搭建的,创建了三个ubuntu虚拟机,然后开始布置分布式系统,但是,后来发现,资源完全不够用。...

2016-12-21 20:29:00

阅读数:2208

评论数:0

Python金融大数据分析-PCA分析

1.pandas的一个技巧 apply() 和applymap()是DataFrame数据类型的函数,map()是Series数据类型的函数。apply()的操作对象DataFrame的一列或者一行数据, applymap()是element-wise的,作用于每个DataFrame的每个数据。 ...

2016-12-15 16:36:28

阅读数:3192

评论数:0

Python金融大数据分析-正态性检验

1.话题引入 我们在线性回归做假设检验,在时间序列分析做自回归检验,那么我们如何检验一个分布是否是正态分布的呢? 首先,我们定义一个用来生成价格路径的函数。当然啦,在这之前我们先导入我们今天要用的库。 import numpy as np np.random.seed(1000) import ...

2016-12-14 21:00:12

阅读数:6951

评论数:0

Python金融大数据分析-蒙特卡洛仿真

1.简单的例子 了解一点金融工程的对这个公式都不会太陌生,是用现在股价预测T时间股价的公式,其背后是股价符合几何布朗运动,也就是大名鼎鼎的BSM期权定价模型的基础。 我们假设现在一个股票的价值是100,那么两年后是多少呢? import numpy as np import pandas as...

2016-12-14 17:06:50

阅读数:10231

评论数:2

Python金融大数据分析-回归分析

回归分析是金融中一个绕不过的话题,其实最好的工具应该是R语言,但是pandas其实也是能够胜任绝大部分工作的。 这里我们就简单介绍一下。 import pandas as pd import numpy as np import matplotlib.pyplot as plt noise = n...

2016-12-12 23:47:04

阅读数:9448

评论数:4

Python金融大数据分析-数据获取与简单处理

Python的功能不可以说不大,在金融数据分析里面有着很方便的应用。 1.数据获取 pandas包中有自带的数据获取接口,详细的大家可以去其官网上找,是io.data下的DataReader方法。 import numpy as np import pandas as pd impo...

2016-12-10 12:18:15

阅读数:17986

评论数:5

时间序列分析这件小事(八)----格兰杰因果关系检验

现实世界中,我们有一些序列之间不知道是谁影响谁,换句话说,我们不知道因果性。这次,我们讲一讲格兰杰因果关系检验。 这个检验的思想很质朴: 我们构造这样一个式子,然后去查看各自前面系数是否为零,如果,上面一个式子中,x前面的系数全为零,或者说,不显著,那么显然就是x不会影响y。也就是不存...

2016-12-05 16:27:12

阅读数:10399

评论数:3

时间序列分析这件小事(七)----协整

真实世界中,其实有很少是平稳时间序列,通常都是含有一定趋势的时间序列,譬如GDP值等等。之前我们说了可以用差分的方法获取平稳序列,但是,一旦差分其实我们丢失了原始序列的一些信息,而且往往很难从实际的意义上去解释差分后拟合的结果,所以今天我们讨论一下“协整” 1.单整 在说协整之前,我们先讨论一下单...

2016-12-05 16:15:09

阅读数:6107

评论数:0

时间序列分析这件小事(六)--非平稳时间序列与差分

1.非平稳时间序列 之前我们说明了怎么样的时间序列是序列平稳的,但是世界并不是那么美好,很多时间序列都不是平稳序列,所以这里就要求我们做一些处理了。 首先我们来看一下非平稳时间序列长什么样。在AR模型中,只要自回归系数都绝对值都是小于1的,那么序列就是平稳的,所以这样一个序列,自回归系数等于1,就...

2016-12-04 21:31:29

阅读数:18858

评论数:0

时间序列分析这件小事(五)--MA模型

之前讲了AR模型,与之对应的是MA模型,也就是移动平均模型。与AR模型类似,只不过,之前是由不同阶滞后的序列拟合出yt,而现在是不同阶滞后的白噪音拟合。说白了,就是我们认为yt是白噪音的线性加权。同样的,我们利用R语言自带的函数来实现MA的学习。 #example 7 y3 = arima.sim...

2016-12-04 20:50:05

阅读数:7316

评论数:0

时间序列分析这件小事(四)--AR模型

1.自回归 之前说了,分析时间序列和回归一样,目的都是预测。在回归里面,我们有一元回归于多元回归,在时间序列里面,我们有自回归。与一元、多元一样,我们分为一阶与多阶自回归。其实还是那样的理念,只不过之前是变量与应变量,现在则是存在时滞的序列之间的关系而已。 先来看一下一阶自回归AR(1),也就是,...

2016-12-03 10:37:06

阅读数:11114

评论数:0

时间序列分析这件小事(三)--自回归的假设检验

和线性回归一样,我们对参数是要做检验的。不是回归出了什么方程,什么系数我们就认了。如果回归学的好的话,我们还会记得,在多元归中,我们有一个F检验,用来检验是否所有因子前面的回归系数是显著的,只要有一个显著,F检验就会拒绝零假设。 在自回归中,我们也要对回归的显著性做一个假设。时间序列的自回归检验通...

2016-12-02 22:22:20

阅读数:6517

评论数:0

时间序列分析这件小事(二)--自回归

说到时间序列,那么就必须提起自回归了。什么是自回归呢,就是说未来的一个时点可以用之前的时点来进行回归预测,还是那一串数字,但是时间状态不同了,存在不同阶的时滞。 所以呢,我们首先要写一个时间滞后函数。 L_ <- function(x,lag = 1,na.is = TRUE){#delay...

2016-12-02 22:00:47

阅读数:4601

评论数:0

时间序列分析这件小事(一)--基本概念与R-studio入门

数据处理,python其实比R有很多优势,但是,单纯的做一些实验和研究,其实R更加合适,特别是时间序列分析,R的包很完备。 1.时间序列基本概念 首先,我们讲一下什么是时间序列。时间序列是一串数字,不一定是按照固定的时间间隔顺序来排列,也可以按照别的物理量,只要符合你的场景就可以了。但是要明确的一...

2016-12-01 22:29:49

阅读数:4929

评论数:0

提示
确定要删除当前文章?
取消 删除