Jordan标准型

Jordan(若尔当)标准型知识梳理

Jordan(若尔当)标准型知识梳理

szmike

szmike

Keep curious

已关注

raDar 等 634 人赞同了该文章

本文主要介绍什么是Jordan标准型以及怎么把一个矩阵化为Jordan标准型。

一,Jordan标准型的定义

矩阵 J 除了主对角线和主对角线上方元素之外,其余都是0,且主对角线上方的对角线的系数若不为0只能为1,且这1的左方和下方的系数(都在主对角线上)有相同的值。易知对角矩阵是一种特殊的Jordan标准型矩阵。

Jordan标准型一般形式

二,把矩阵化为Jordan标准型

在介绍具体步骤之前,我们需要了解一些基本概念。

1. 代数重数(algebraic multiplicity,下简称am)和几何重数(geometric multiplicity,下简称gm)

代数重数:矩阵特征多项式 α=0 中某个解的重复次数。

矩阵特征多项式

i1,i2,...,ik 即为对应于 λ1,λ2,...,λk 的代数重数。

几何重数:矩阵某个特征值对应的特征空间 E 的维度。即(A−λI) 的零空间 Nullsp(A−λI) 的维度。

下面举例说明什么是代数重数和几何重数。

矩阵A

矩阵B

αA(s)=αb(s)=(s−1)2(s−3)

因此 amA(1)=amB(1)=2,amA(3)=amB(3)=1 。

接下来求各特征值对应的几何重数。

易知 rank(A−I)=2,rank(B−I)=1,rank(A−3I)=2,rank(B−3I)=2 ,根据线性代数知识(参见同济第五版线性代数第四章定理7)易知若 m×n 矩阵 A 的秩 R(A)=r ,则 n 元齐次线性方程组 Ax=0 的解集的秩 RS=n−r .

因此 gmA(1)=1,gmA(3)=1;gmB(1)=2,gmB(3)=1 。

2. 和定理(Sum Formula)

如果 A=Diag(B,C) ,那么 A 的代数重数和几何重数等于 B,C 的代数和几何重数之和。

即 amA(λ)=amB(λ)+amC(λ);gmA(λ)=gmB(λ)+gmC(λ) 。

推论: 如果 J=Diag(J11,J12,...,Jij) ,那么有以下结论:

gmJ(λ) = 包含特征值 λ 的Jordan块的数量

例:

若有 n 个Jordan块包含 λ ,那么 gmJ(λ) =n。

amJ(λ) =包含特征值 λ 的Jordan块的尺寸之和

例:

若 n 个Jordan块的尺寸分别为 k1×k1,k2×k2,...,km×km ,那么 amJ(λ)=k1+k2+...+km 。

3. 直和(direct sum)

(a) 向量 v=(v1,...,vn)T∈Cn,w=(w1,...,wm)T∈Cm

v⊕w=(v1,...,vn,w1,...,wm)

(b) 子空间 V∈Cn,W∈Cm

V⊕W={v⊕w∈Cm+n:v∈V,w∈W}

⊕ 就被称为直和运算,定义如上所示。

备注:

(a) 如果 v1,...,vr 是V的一组基, w1,...,ws 是W的一组基,那么 v1⊕0m,...,vr⊕0m,0n⊕w1,...,0n⊕ws 是 V⊕W 的一组基。

dim(V⊕W)=dim(V)+dim(W) (dim指维度)

(b)如果 A 为 m 阶方阵, B 为 n 阶方阵,那么对于任意的 v∈Cm,w∈Cn

Diag(A,B)(v⊕w)=(Av)⊕(Bw)

4. 矩阵的特征多项式以及特征空间和对角矩阵块特征多项式以及特征空间的关系

如果 A=diag(B,C) ,那么

(a) αA(s)=αB(s)⋅αC(s)

(b) EA(λ)=EB(λ)⊕EC(λ)

(a)易证,此处略去。对(b)进行证明。

证明:假设 B 是 m 阶方阵, C 是 n 阶方阵。对每个 u∈Cm+n 可以写作 u=v⊕m 。

(A−λI)u=Diag(B−λI,C−λI)(v⊕w)=(B−λI)v⊕(C−λI)w

u∈EA(λ)⇔(A−λI)u=0⇔(B−λI)v=0,(C−λI)w=0⇔v∈EB(λ),w∈EC(λ)⇔u=v⊕w∈EB(λ)⊕EC(λ)⇒EA(λ)=EB(λ)+EC(λ)

5. 特征多项式和特征空间的变换不变性

如果 B=P−1AP ,那么 αB=αA,EA(λ)=PEB(λ)={Pv:v∈EB(λ)}

所以 amB(λ)=amA(λ),gmB(λ)=gmA(λ)

证明:

αPAP−1(s)=det(PAP−1−sI)=det(P(A−P−1sIP)P−1)=det(P)det(A−P−1sIP)det(P−1)=det(P)det(A−sIP−1P)det(P−1)=det(P)det(A−sI)det(P−1)=det(A−sI)det(P)det(P−1)=det(A−sI)

我们有 v∈EA(λ)⇔v∈PEB(λ) ,所以 EA(λ)=PEB(λ) ,从而 gmB(λ)=gmA(λ) 。

小结1

由以上知识我们已经可以确定阶次小于等于3的方阵的Jordan标准型了。

因为此时一共只有以下四种情况

(a)  gm(λ1)=1,gm(λ2)=1,gm(λ3)=1am(λ1)=1,am(λ2)=1,am(λ3)=1

三个特征值各对应一个1*1的Jordan块

(b) gm(λ1)=1,gm(λ2)=2am(λ1)=1,am(λ2)=2

某个特征值对应一个1*1的Jordan块,另一个特征值对应2个1*1的Jordan块

(c) gm(λ1)=1,gm(λ2)=1am(λ1)=1,am(λ2)=2

某个特征值对应一个1*1的Jordan块,另一个特征值对应1个2*2的Jordan块

(d) gm(λ1)=1am(λ1)=3

某个特征值对应一个3*3的Jordan块

6. 化为Jordan标准型的条件

任意一个方阵 A 都和一个Jordan标准型矩阵J相似,换句话说,就是存在矩阵 P 使得: P−1AP=J=Diag(J11,...,Jij,...) ,其中 Jij=J(λi,dij) 。 i 代表该Jordan块对应特征值 λi , j 代表对应特征值 λi 的第 j 个Jordan块。其中 λ1,λ2,...,λs 都是 A 的特征值。

备注:

如果 J 和 J′ 有同样数量和形式的Jordan块,但是Jordan块在对角线上的摆放次序不同,那么这两个Jordan标准型矩阵是相似的。例如: J=Diag(A,B),J′=Diag(B,A) 。

证明:

假设 J=Diag(A,B) ,其中 J 为 n 阶方阵, A 为 k1 阶矩阵, B 为 k2 阶矩阵, k1+k2=n 。

令矩阵 P 为:

左下角为 k2阶单位矩阵,右上角为 k1 阶单位矩阵。

易知P的逆矩阵为:

所以 P−1JP 为:

推论:如果矩阵A可以被对角化当且仅当其所有特征值的代数重数和几何重数相等。

易证,此处略去。

接下来介绍如何找到P,使得 P−1AP=J (A的阶次小于等于3)

基本思路:

P−1AP=J⇒AP=PJ

设 P=(v1|...|vn),其中 v1,...vn 为向量,AP=(Av1|...|Avn) 。

例:

易得其只有一个特征值 λ1=−1,am(λ1)=2,gm(λ1)=1 。

所以其Jordan标准型为:

令 P=(v1|v2) ,那么:

即:

除此以外 v1,v2 必须线性无关,否则 P 不可逆。

接下来的步骤就是解向量方程,具体过程略去。

最后介绍如何把一般形式的矩阵化为Jordan标准型。

7. 广义特征空间

定义:设 A 为 m×m 矩阵。如果 p≥1 是一个整数,那么 A 的 p 重广义特征空间可定义为:

对应的广义特征空间的维度为:

备注:

8. 广义特征向量的性质

(a) 如果 A=Diag(B,C) ,那么 EAp(λ)=EBp(λ)⊕ECp(λ),gmAp(λ)=gmBp(λ)+gmCp(λ) 。

(b) 如果 B=P−1AP ,那么 EAp(λ)=PEBp(λ),gmAp(λ)=gmBp(λ) 。

(c) 如果 A 和Jordan标准型矩阵 J=Diag(...,J(λi,kij),...) 相似,那么

gmAp(λi)−gmAp−1(λi) 等于Jordan块 J(λi,kij) 阶次大于等于 p 的Jordan块的数量。

(d) 如果 gmAp+1(λ)=gmAp(λ) ,那么 gmAp+q(λ)=gmAp(λ) 当 q≥1 。

证明:

(a) (A−λI)p=Diag(B−λI,C−λI)p=Diag((B−λI)p,(C−λI)p)

EAp(λ)=Nullsp((A−λI)p)=Nullsp(Diag((B−λI)p,(C−λI)p))=Nullsp((B−λI)p,(C−λI)p)=EBp(λ)⊕ECp(λ)

(b) (B−λI)p=P−1(A−λI)pP

v∈EAp(λ)⇔(A−λI)pv=0⇔P−1(A−λI)pPP−1v=0⇔(B−λI)pP−1v=0⇔P−1v∈EBp(λ)⇒EAp(λ)=EBp(λ),gmAp(λ)=gmBp(λ)

(c) 下式可由(d)的证明导出。

J=Diag(J11,...,Jij,...),Jij=J(λi,kij)gmAp(λi)−gmAp−1(λi)=gmJp(λi)−gmJp−1(λi)=∑jgmJijp−gmJijp−1=∑j∈kij≥p1

(d) 证明这个结论之前,我们需要先证明一个式子 (A−λI)EAp+1(λ)=Im(A−λI)⋂EAp(λ) ,其中 Im(M)={Mv:v∈Cn} ,即为矩阵的相空间。

令 B=A−λI ,则现在我们需要证明 BEAp+1(λ)=Im(B)⋂EAp(λ) 。

若向量 w∈BEAp+1(λ) , 显然取 v∈EAp+1⇒w∈Im(B) 。

又 w∈BEAp+1(λ)⇒Bpw∈BpBEAp+1(λ)=Bp+1EAp+1=0 (注意此处的0是指一个全部元素为0的矩阵)

因此 w∈EAp(λ) 。到这里我们有 w∈BEAp+1(λ)⇒w∈Im(B)⋂EAp(λ) 。

若向量 w∈Im(B)⋂EAp(λ) ,则 w∈Bv,Bpw=0 。

w∈Bv,Bpw=0⇒Bpw∈BpBv=Bp+1v=0 。因此 v∈EAp+1⇒w∈Bv∈BEAp+1

到这里我们有 w∈Im(B)⋂EAp(λ)⇒w∈BEAp+1(λ) 。

综上 w∈Im(B)⋂EAp(λ)⇔w∈BEAp+1(λ) ,因此 BEAp+1(λ)=Im(B)⋂EAp(λ) ,得证。

对上式两边同时进行取维度运算:

这里需要用到rank-nullity theorm:

因为 Nullsp(B)=EA(λ)⊂EAp+1(λ)⇒dim(Nullsp(B)⋂EAp+1(λ))=dimEA(λ)=gmA(λ)

所以 dim(Im(B)⋂EAp+1(λ))=dim(EAp+1(λ))−gmA(λ)=gmAp+1(λ)−gmA(λ)

现在回到对(d)的证明上。因为 gmAp+1(λ)=gmAp(λ) ,所以 EAp+1(λ)=EAp(λ) 。

gmAp+2(λ)−gmAp+1(λ)=(gmAp+2(λ)−gmA(λ))−(gmAp+1(λ)−gmA(λ))=dim(Im(B)⋂EAp+1)−dim(Im(B)⋂EAp)=0

所以 gmAp+2(λ)=gmAp+1(λ) ,根据此递推关系(d)得证。

推论: gmAp(λ) 的二阶差分可以确定Jordan块 J(λ,p) 的数量。即:

由(c)很容易得出,证明略去。

小结2

由以上结论,我们已经可以唯一确定任意方阵A对应的Jordan标准型矩阵了。

具体步骤如下:

(a) 计算出矩阵A所有的特征值。

(b) 计算出所有特征值对应的各阶广义代数重数。

(c) 根据广义代数重数计算出各个特征值对应的Jordan块的数量和大小。

例:

V就是前面提到的代数几何重数gm,符号忘记统一,这里就不进行修改了

所以矩阵A的Jordan标准型共有1个2*2的Jordan块,一个3*3的Jordan块。

将 A 化为Jordan标准型的矩阵 P 则可按以下方式确定:

B1,B2,...,Bs 对应 λ1,λ2,...,λs 。 wij 的下标 i 对应 λi , j 对应广义几何重数。


如果大家对证明有问题或者略去的证明有不清楚的欢迎在下面留言。感觉有用的话可以点个赞,码字不容易。

发布于 2022-02-22 08:53・IP 属地英国

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值