矩阵奇异值

一、ATA

任给一个矩阵A,都有: ATA 为一个对称矩阵

例子:A为一个m×n的矩阵,A的转置为一个n×m的矩阵

对称矩阵的重要性质如下

① 对称矩阵的特征值全为实数(实数特征根)

② 任意一个n阶对称矩阵,一定有代数重数=几何重数

若对称矩阵A的某个特征值的重数=k,则对应的几何重数=k
即一个特征根的重数若为k,则:
该特征根可找到对应线性无关的特征向量个数一定也为k

③ 任意一个n阶对称矩阵,一定有n个线性无关的特征值向量

如果无重根,即n个特征值对应n个线性无关的特征向量
倘若有k重根,也该重根必有k个线性无关的特征向量
倘若有k个重根,可理解为k个相同的特征值而已(总的特征值个数还是n)
也就是:一定有n个特征值,一定有n个线性无关的特征值向量

④ 任意一个n阶对称矩阵,一定能相似对角化

任意一个n阶对称矩阵,一定有n个线性无关的特征值向量
所以对称矩阵一定满足对角化条件,即:
任意一个n阶对称矩阵A,都有 A=PDP−1
任意一个n阶对称矩阵A,都有相似矩阵为对角矩阵的矩阵
对角矩阵D上,主对角线上的元素即为A或D的特征值

⑤ 任意一个n阶对称矩阵,一定能正交对角化

不同特征值对应的特征向量是彼此正交的
彼此正交是指:两个向量的乘积=0,即两个向量相互垂直
也就是: A=PDP−1 中的 P 为正交矩阵

二、ATA 的特征值与奇异值

由于 ATA 相乘后得到的一定是一个对称矩阵(n×n)

那么 ATA 一定有:

n个实数特征值,记为: λ1,λ2,...,λn

n个线性无关的特征向量,记为: v1→,v2→,...,vn→

也就是: v1→,v2→,...,vn→ 为n个相互垂直的特征向量

那么此时称: λi 为 ATA 的奇异值

记作: σi=λi

三、ATA 奇异值的非负性

结论:ATA的特征值 λi≥0

从而可得:ATA的奇异值 λi≥0

即: σi≥0

推导过程如下:

矩阵A左乘特征向量 vi→ 得到一个新的向量

那么这个新的向量模的平方记为: ||Avi→||2

因为两个相同的向量点乘就等于该向量模的平方

a→·a→=||a→||×||a→||×cos(0)=||a→||×||a→||×1=||a→||2

那么: ||Avi→||2=(Avi→)(Avi→)

将两个向量的点乘转为两个矩阵相乘,即为:

(Avi→)(Avi→)=(Avi)T(Avi)

将转置打开得: (Avi)T(Avi)=viTATAvi

由矩阵乘法结合律可得: viTATAvi=viT(ATAvi)

特征值的定义为: Axi→=λxi→

因为 ATA 的特征值为: λi

于是: ATAvi=λivi

从而: viT(ATAvi)=viTλivi

因为: λi 为一个常数,满足矩阵乘法交换律

于是: viTλivi=λiviTvi

接着: viTvi 转为两个向量的点乘 vi→·vi→=||vi||2

那么: λiviTvi=λi||vi||2

此时我们将:特征向量进行归一化处理

也就是将:v1→,v2→,...,vn→ 转为n个相互垂直的单位特征向量

记为: u1→,u2→,..,un→

那么将 vi 替换成 ui 后为: λi||ui||2

因为: ui 为相互垂直的单位特征向量

所以:每个 ui 的模长为1,于是: ||ui||2=1

那么: λi||ui||2=λi

最终: ||Avi→||2=λi

由于: ||Avi→||2 为非负数(一个向量的模长的平方为非负数)

所以: λi 也为非负数,即 λi≥0

四、换个角度看ATA的奇异值

由上面可知: σi=λi=||Avi→||2=||Avi→||

那么可以说:奇异值 σi 就是这个向量 Avi→ 的模长

也可以说:矩阵A左乘 ATA 特征向量 vi 后

得到该新向量的模长 (||Avi→||) 即为 ATA 的奇异值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值