通过C语言程序将十进制数转化成二进制数,然后求出二进制数中1的个数。
下面用三种方法来实现。来
方法一:
除2取余法。对一十进制数,用2辗转相除至结果为1,将余数和最后的1从下向上倒序写就是对应的二进制。
例如:十进制数302转化成二进制。
302/2=151余0;151/2=75余1;75/2=37余1;37/2=18余1;18/2=9余0;9/2=4余1;4/2=2余0;2/2=1余0,故二进制为100101110。(二进制中首位是符号位,正数加1,负数加0)
此方法的缺点是只可以对正数运算,一旦输入负数结果出现错误。
代码如下:
#include<stdio.h>
int main()
{
int num,count=0;
scanf("%d",&num);
while(num)
{
if(num%2==1)count++;/*如果num除2的余数为1时,即为二进制中1*/
num=num/2;
}
printf("count=%d",count);
return 0;
}
方法二:
移位法。移位法分为左移和右移两种情况,左移时数的右边都补0;右移时正数左边补0,负数左边补1。C语言中“<<”为左移运算符,“>>”为右移运算符。移位法虽可以正负数进行转换,但它的缺点是效率低下,对于-1这个数需要向右移位32次才能找到对应的二进制数。下面程序用了“右移法”实现十进制到二进制的转换。
代码如下:
#include<stdio.h>
int main()
{
int i,num,count=0;
scanf("%d",&num);
i=32;/*32或64位比特位*/
while(i--)
{
if(num&1==1)count++;
num=num>>1;
/*>>右移运算符;右移时负数补1、正数补0,num>>1指右移1位*/
}
printf("count=%d",count);
return 0;
}
方法三 :
按位“与”法,即x=x&(x-1)。此方法不仅可以对正负数进行十进制到二进制的转化,而且效率高。对于整型数在存放地址时,它以32位或64位的补码形式存放。x=x&(x-1)还可以判断某数是否为2的n次方,当结果为0时,则这个数就是2的n次方。
下面对十进制数15进行转换分析:
15的八位二进制数补码为0000 1111.
第一次与运算 x 0000 1111
x-1 0000 1110
x&(x-1) 0000 1110---14
第二次与运算 x 0000 1110
x-1 0000 1101
x&(x-1) 0000 1100---12
第三次与运算 x 0000 1100
x-1 0000 1011
x&(x-1) 0000 1000---8
第四次与运算 x 0000 1000
x-1 0000 0111
x&(x-1) 0000 0000---0
进行4次与运算后结果为0,则二进制中1的个数就为4。
代码如下:
#include<stdio.h>
int main()
{
int num,count=0;
scanf("%d",&num);
while(num)
{
num=num&(num-1);
count++;/*num不为0时,每进行一次与运算,则二进制中1的个数加1*/
}
printf("count=%d",count);
return 0;
}
本文出自 “ S-Lyf”博客 请务必保留出处: https://blog.csdn.net/scenlyf/article/details/51637491