数组中的逆序对

本文介绍了一种高效算法来计算数组中的逆序对总数。通过使用归并排序法,避免了O(N^2)的时间复杂度,有效地解决了问题。文章详细解释了归并排序如何帮助我们统计逆序对,并提供了具体实现代码。

https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof/submissions/
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

示例:

输入: [7,5,6,4]
输出: 5


如果遍历两次的话也就是O(N^2)的算法,那就超时了

所以我们采用别的方法
归并排序法

class Solution {
    static int num;
    public static int reversePairs(int[] nums) {
        num = 0;
        mergeSortHelper(nums,0,nums.length);
        return num;
    }
    public static void mergeSortHelper(int[] array,int left,int right){
        //类似于后序
        if(left >= right || right - left == 1){
            //划分的数组为空或着只有一个元素
            return;
        }
        int mid = (left + right)/2;
        //[left,mid)
        //[mid,right)
        mergeSortHelper(array,left,mid);//递归左区间数组
        mergeSortHelper(array,mid,right);//递归右区间数组
        merge(array,left,mid,right);//合并
    }
    public static void merge(int[] array,int left,int mid ,int right){
        //[left,mid)
        //[mid,right)
        int length = right - left;//创建数组的长度
        int[] output = new int[length];
        int outputIndex = 0;
        int i = left;//想当于链表的cur1,cur2,记录下标的位置
        int j = mid;
        while (i < mid && j < right){//类似cur1和cur2 都不为空
            if(array[i] <= array[j]){
                output[outputIndex++] = array[i++];
            }else {
                num = num + (mid - i);
                //否则将后面的元素添入
                output[outputIndex++] = array[j++];
            }
        }
        while (i < mid ){
            output[outputIndex++] = array[i++];
        }
        while (j < right){
            output[outputIndex++] = array[j++];
        }
        for (int k = 0; k < length; k++) {
            array[left + k] = output[k];
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值