线性规划两阶段求解方法

想快速掌握线性规划两阶段求解方法,强烈推荐博文《三言两语讲清楚线性规划单纯形方法》。

百度百科给了下面一个例子,感觉其解法不容易看明白原理,换一种解释方法,应该很容易看明白两阶段法的原理。

问题:

m a x z = − 3 x 1 + x 3 max z = -3x_1+x_3 maxz=3x1+x3
s.t.
Cannot read property 'type' of undefined

第一阶段,找可行解

首先任意取三个未知数作为基变量,例如 x 3 , x 4 , x 5 x_3,x_4,x_5 x3,x4,x5,原问题转化成下面形式:
Cannot read property 'type' of undefined
非基变量 x 1 , x 2 = 0 x_1,x_2=0 x1,x2=0,显然 x 4 = − 5 , x 5 = − 10 x_4=-5,x_5=-10 x4=5,x5=10 超出了约束条件范围,因此,这一组不是可行解。所以我们决定从 x 4 , x 5 x_4,x_5 x4,x5 中选取一个从基变量中取出,不妨选择 x 5 x_5 x5 出基。我们得到出基变量的选择原则:等式的常数项为负数的变量不能做基变量

那么选择哪个变量作为新的基变量呢?在下面等式中,
x 5 = − 2 x 1 + 4 x 2 − 10 x_5=-2x_1+4x_2-10 x5=2x1+4x210
有两种选择方案:
x 1 = 2 x 2 − 1 2 x 5 − 5 , x 2 = 1 2 x 1 + 1 4 x 5 + 5 2 x_1=2x_2-\frac12x_5-5,\\ x_2=\frac12x_1+\frac14x_5+\frac52 x1=2x221x55,x2=21x1+41x5+25
显然,第一种方案中,令非基变量为零, x 1 x_1 x1非可行解;第二种方案是我们所需要的。这就得到入基变量的选择原则:等式的常数项非负的变量才能做基变量

OK,置换变量 x 5 , x 2 x_5,x_2 x5,x2 后,得到:

Cannot read property 'type' of undefined

等式中的常数项全部非负,目前已经得到一组可行基变量。

第二阶段,求最优解

我们看一下目标 z z z 的值:
z = − 3 x 1 + x 3 = − 9 2 x 1 − 3 4 x 5 + 3 2 z=-3x_1+x_3=-\frac92x_1-\frac34x_5+\frac32 z=3x1+x3=29x143x5+23

因为 x 1 , x 3 x_1,x_3 x1,x3 系数小于零,欲取得最大值,必须令非基变量为零,于是我们得到:
x 1 = 0 , x 2 = 5 2 , x 3 = 3 2 , x 4 = 5 , x 5 = 0 m i n z = 3 2 x_1=0,x_2=\frac52,x_3=\frac32,x_4=5,x_5=0\\ min z=\frac32 x1=0,x2=25,x3=23,x4=5,x5=0minz=23

第二阶段正好闯枪口,有些不过瘾。想了解更详细的原理,参见博文:三言两语讲清楚线性规划单纯形方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

许野平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值