机器学习的模型
简单的描述:根据训练数据集 D 训练一个模型
Perceptron Learning Algorithm
PLA,感知机学习算法
对于二分类:
数据集: X={
x1,x2,...,n}
类别: Y={
+1,−1}
模型的原理:寻找一个超平面把两类数据点完全正确分开。
决策超平面: h(x)=wTx+b
其中
本文介绍了机器学习中的感知机学习算法(PLA),它寻找一个超平面将二分类数据点完全分开。通过更新权值向量w和偏置b来修正决策错误,针对+1和-1类别的错误分类情况,分别给出了权值更新规则。虽然PLA对线性可分数据集能收敛,但面对线性不可分情况时存在局限性。
简单的描述:根据训练数据集 D 训练一个模型
PLA,感知机学习算法
对于二分类:
数据集: X={
x1,x2,...,n}
类别: Y={
+1,−1}
模型的原理:寻找一个超平面把两类数据点完全正确分开。
决策超平面: h(x)=wTx+b
其中

被折叠的 条评论
为什么被折叠?