机器学习基石第一讲:PLA

本文介绍了机器学习中的感知机学习算法(PLA),它寻找一个超平面将二分类数据点完全分开。通过更新权值向量w和偏置b来修正决策错误,针对+1和-1类别的错误分类情况,分别给出了权值更新规则。虽然PLA对线性可分数据集能收敛,但面对线性不可分情况时存在局限性。
摘要由CSDN通过智能技术生成

机器学习的模型

这里写图片描述

简单的描述:根据训练数据集 D 训练一个模型 g ,使得这个假设模型 g 和原始数据的模型 f 尽可能接近

Perceptron Learning Algorithm

PLA,感知机学习算法

对于二分类:
数据集: X={ x1,x2,...,n}
类别: Y={ +1,1}
模型的原理:寻找一个超平面把两类数据点完全正确分开。
决策超平面: h(x)=wTx+b
其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值