盛最多的水

1.题目

在这里插入图片描述

2. 暴力

遍历所有可能

class Solution {
public:
    int maxArea(vector<int>& A) {
        int res = -1;
        int m = A.size();
        for (int i= 0; i< m; i++) {
            for (int j = i+1; j < m; j++) {
                int tmp = (j - i) * min(A[i], A[j]);
                res = max(res, tmp);
            }
        }
        return res;
    }
};

2. 优化

面积= 间距 * 最小的高度
定义两个指针分别向内移动,由于,每次都是移动一步,相对两个指针而言,无论移动哪个指针,间距始终再减小并且减小的值始终为1;
为了保障面积最大,只有找出高度大的哪个指针向内部移动,这样可以保证面积最大;

class Solution {
public:
    int maxArea(vector<int>& A) {
        int res = -1;
        int m = A.size();
        int i = 0, j = m - 1;
        while (i < j) {
            int tmp = (j - i) * min(A[i], A[j]);
            if (A[i] < A[j]) {
                i++; 
            } else {
                j--;
            }
            res = max(res, tmp);
            
        }
        return res;
    }
};
最多的容器问题是一个经典的算法问题,通常被称为“最多桶问题”。问题描述是这样的:给你一个长度为n的整数数组,每个元素代表一个木板的宽度,木板高度由左右两端确定,求两板之间能多少。要求编写一个函数,计算你能收集到的最多量。 该问题可以通过双指针法高效地解决。算法的基本思想是从数组的两端开始向中间扫描,找到能够装更多的区间,并更新最大容量。具体步骤如下: 1. 初始化两个指针,一个指向数组的开始,另一个指向数组的末尾,即i=0, j=n-1。 2. 计算当前的量,即宽度为j-i,高度为min(height[i], height[j]),其中height[i]和height[j]分别代表当前指针i和j所指的木板的高度。 3. 更新最大容量的变量,如果当前量大于最大容量,则最大容量等于当前量。 4. 移动指针,如果height[i] < height[j],则i向右移动一位(i++),反之则j向左移动一位(j--),因为木桶的容量取决于较短的木板高度。 5. 重复步骤2~4,直到两个指针相遇,此时已经扫描完所有可能的组合。 以下是该算法的C语言实现示例: ```c #include <stdio.h> int maxArea(int* height, int heightSize) { int i = 0, j = heightSize - 1; int maxWater = 0; while (i < j) { int width = j - i; int water = width * (height[i] < height[j] ? height[i++] : height[j--]); maxWater = water > maxWater ? water : maxWater; } return maxWater; } int main() { int height[] = {1, 8, 6, 2, 5, 4, 8, 3, 7}; int heightSize = sizeof(height) / sizeof(height[0]); printf("The maximum area is: %d\n", maxArea(height, heightSize)); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值