互联网大厂面试实录:在线教育场景下的Java全栈技术深度问答与业务落地
场景设定
大厂面试官老李,今天面试一位自称“十年Java开发,干饭不误事”的程序员赵大宝。面试场景聚焦在“在线教育平台”,结合内容社区、AI应用、支付、直播等主流业务模块进行技术深度挖掘。
第一轮:基础技术与核心业务逻辑
面试官老李:
- 平台每日活跃用户量超百万,课程内容和用户笔记的存储与检索,你打算如何设计数据库结构?Hibernate和MyBatis你更倾向用哪个,为什么?
- 用户在看直播课时,弹幕系统如何设计?涉及消息队列你会选什么?用Kafka举例讲讲。
- 课程详情页有高并发访问,你通常如何做缓存设计?Redis常见用法有哪些?
- 平台支持多端(Web/APP/小程序),你如何保证接口的安全?Spring Security和JWT各自怎么用?
赵大宝:
- 这个……我觉得用MySQL挺好,表多点,索引加好点。Hibernate我觉得太自动化了,MyBatis挺灵活的,写SQL开心。
- 弹幕嘛…我觉得用消息队列,比如Kafka,发消息挺快。呃,Kafka就是可以发消息,然后消费消息,挺厉害的。
- 缓存嘛,Redis呗,可以存点热点数据,经常用get、set,做点分布式锁啥的。
- 哦,安全…Spring Security和JWT都能用,加点拦截器,前端传token就行。
面试官老李点评: “基本思路有,细节可以再深入,比如数据一致性和安全细节。MyBatis确实常用在复杂业务场景。”
第二轮:微服务、运维与高可用
面试官老李: 5. 平台已经微服务化,课程、用户、支付、推荐等服务解耦后,服务间通信你用什么?用OpenFeign说说。 6. 课程发布要审核,AIGC自动识别违规内容,用了Spring AI和RAG技术,怎么落地的? 7. 大促时流量暴增,如何保证服务不雪崩?Resilience4j你用过吗? 8. 日志采集和链路追踪怎么做?ELK、Prometheus、Zipkin都介绍下。
赵大宝: 5. 微服务嘛,可以用OpenFeign,写接口像写本地方法一样。调用起来很方便,就是,有时候会超时啥的。 6. AI这个…就是连个接口,AIGC帮你识别,RAG…呃,就是能查查知识库,具体我还得研究。 7. 服务雪崩…限流呗,Resilience4j可以熔断,具体咋配…我没怎么用过。 8. 日志嘛,ELK收集日志,Prometheus监控,Zipkin能追踪请求链路…反正都挺牛的。
面试官老李点评: “你对整体技术栈有了解,AI和高可用方案建议多实践,链路追踪在排查线上问题很关键。”
第三轮:综合业务、场景落地与AI拓展
面试官老李: 9. 支付场景下,如何防止重复扣款与并发安全问题?涉及分布式事务你会怎么做? 10. 在线教育平台如何利用AI实现智能客服?Spring AI能做什么? 11. 用户笔记支持富文本、图片、音视频,如何高效存储和分发?涉及对象存储和CDN你了解哪些? 12. 日常CI/CD你怎么做?Jenkins和Docker流程简单说说。 13. 你觉得未来在线教育技术创新点在哪里?聊聊Web3.0、区块链或AI在行业的结合。
赵大宝: 9. 支付要防止重复扣款,可以加分布式锁或者乐观锁,分布式事务…呃,反正挺复杂的。 10. AI客服嘛,Spring AI能接入大模型,回答用户问题,具体怎么接还得查文档。 11. 富文本…用对象存储,比如阿里云OSS,图片视频都能扔进去,CDN加速分发呗。 12. Jenkins自动化构建,Docker打包,部署到服务器,一键上线。 13. 未来嘛,AI肯定火,Web3.0和区块链…我觉得也有用,但我还没咋用过。
面试官老李总结: “大宝有自己的理解,建议多做技术深挖和项目实践。今天面试就到这,回去等通知。”
面试问题答案详细解析与场景技术梳理
1. 课程内容与用户笔记的存储与检索
- 生产环境推荐用关系型数据库(如MySQL、PostgreSQL)做结构化数据存储,结合ES实现全文检索。
- ORM层可选Hibernate(自动化高,适合快速开发)、MyBatis(SQL灵活,适合复杂业务)。
- 表结构可用课程表、用户表、笔记表,索引优化热点字段。
2. 弹幕系统与消息队列
- 高并发实时弹幕场景下,用Kafka等高吞吐消息中间件做生产消费,提升系统解耦和扩展性。
- 生产端发送弹幕消息,消费端分发到前端或存储。
3. 缓存设计
- Redis常用于热点数据缓存、分布式锁、Session共享等。
- 可用String、Hash、List等多种结构支撑不同场景,结合失效策略和本地缓存提升性能。
4. 安全方案
- Spring Security负责权限管理、接口防护;JWT用于无状态认证,前后端分离场景下常用。
5. 微服务通信
- OpenFeign基于HTTP实现服务间调用,简化RestTemplate代码,支持负载均衡和熔断。
6. AI与内容审核
- Spring AI能集成多种大模型(如OpenAI),RAG支持知识库检索增强生成,AIGC自动生成或审核内容。
7. 高可用与容灾
- Resilience4j提供限流、熔断、重试等机制,防止服务雪崩。
- 日志链路用ELK、监控用Prometheus、链路追踪用Zipkin实现运维可视化。
8. 支付安全与分布式事务
- 采用幂等设计(唯一流水号)、分布式锁或消息队列保障事务一致性。
- 分布式事务可用Seata、RocketMQ事务消息等方案。
9. 智能客服与AI
- Spring AI可集成对话大模型,结合企业知识库做智能问答,支持RAG等能力。
10. 富媒体存储与分发
- 阿里云OSS、MinIO等对象存储,CDN加速图片/音视频分发,提升访问体验。
11. CI/CD流程
- Jenkins+Docker实现自动构建、镜像化部署、流水线自动上线,提升交付效率。
12. 技术创新展望
- AI助力个性化学习、智能推荐、智能客服。
- Web3.0/区块链可拓展证书防伪、数字资产管理。
总结
本文通过真实面试故事,梳理了在线教育场景下的大厂Java技术栈应用及业务解决方案,配套答案帮助小白系统学习。