解决tensorflow报错

当运行Tensorflow时遇到'out of memory'错误,通常是因为GPU资源被其他程序如jupyter或pycharm占用。解决办法是关闭占用GPU的程序,释放资源以便Tensorflow可以正常工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CUDA runtime implicit initialization on GPU:0 failed. Status: out of memory

这个问题是tensorflow 无法调用你的GPU的资源导致的,这个原因是由于你同时开启了jupyter 与

pycharm  其中一个程序把你的GPU资源占用, 另一个程序就无法调用你的GPU,解决方案就是把其中一个程序关掉即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

quzah

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值