qwerqwer233sjjss
码龄1年
关注
提问 私信
  • 博客:4,131
    4,131
    总访问量
  • 4
    原创
  • 1,522,088
    排名
  • 47
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2023-09-06
博客简介:

qwerqwer233sjjss的博客

查看详细资料
  • 原力等级
    当前等级
    1
    当前总分
    79
    当月
    0
个人成就
  • 获得85次点赞
  • 内容获得0次评论
  • 获得97次收藏
创作历程
  • 4篇
    2024年
成就勋章
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

预测模型搭建和评估(基本操作)

先来简单介绍下这个几个库文件的作用吧!#可以显示一个字符串、显示一个 Pandas 数据框、显示一张图片、显示一段 HTML 代码#python数据可视化库#用于建立逻辑回归模型#用于建立树回归模型#交叉验证模型,可以使用各种交叉法分割出数据集,来评估模型拥有这些库文件,我们就可以开始搭建预测模型啦!
原创
发布博客 2024.03.21 ·
1830 阅读 ·
30 点赞 ·
0 评论 ·
41 收藏

数据可视化

xheightwidth=0.8data=Nonestacked代表按比例,将两个列索引代表的值,显示在一个柱子上这里解释下:对于groupy分组操作进行完成后,得到的是一个类dataframe的groupy类型数据,进行count操作后,数据变为series类型,unstack操作过后,数据变为dataframe类型!
原创
发布博客 2024.03.18 ·
426 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

2.pandas 的数据清洗及特征处理

缺失值:我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续做后面的分析或建模,所以拿到数据的第一步是进行数据清洗,即缺失值、重复值、字符串和数据转换等操作,将数据清洗成可以分析或建模的样子。如果可能的话,要放下什么的 item->dtype 的字典, 或字符串“infer”,它将尝试向下转换为适当的 相等类型(例如,如果可能,则将 float64 更改为 int64)。如果 ,则生成的轴将被标记为 0, 1, ..., n - 1。
原创
发布博客 2024.03.14 ·
822 阅读 ·
23 点赞 ·
0 评论 ·
23 收藏

1.1pandas的各种数据及其操作

DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。它的本质就是将文本分成若干块,每次处理chunksize行的数据,最终返回一个TextParser对象,对该对象进行迭代遍历,可以完成逐块统计的合并处理。Series 是 Pandas 中的一种基本数据结构,类似于一维数组或列表,但具有标签(索引),使得数据在处理和分析时更具灵活性。
原创
发布博客 2024.03.12 ·
1053 阅读 ·
28 点赞 ·
0 评论 ·
27 收藏