正则表达式

match() —xxx开头

匹配出以xxx开头的字符串

 

匹配对象Macth Object具有group方法,用来返回字符串的匹配部分。

 #coding=utf-8
 import re
 result = re.match("itcast","itcast.cn")
 result.group()
 itcast

 

 


search()—匹配第一个

扫描整个字符串并返回第一个成功的匹配。

需求:匹配出数字

 #coding=utf-8
 import re
 ​
 ret = re.search(r"\d+", "阅读次数为 9999")
 ret.group()

 

 


findall()—匹配所有

找到正则表达式所匹配的所有子串,并返回一个列表,

 findall(string[], pos[], endpos)
  • string : 待匹配的字符串。

  • pos : 可选参数,指定字符串的起始位置,默认为 0。

  • endpos : 可选参数,指定字符串的结束位置,默认为字符串的长度。

例子

 #coding=utf-8
 import re
 ​
 ret = re.findall(r"\d+", "python = 9999, c = 7890, c++ = 12345")
 print ret

 

 


sub()—替换

用于替换字符串中的匹配项

需求:将匹配到的次数加1

方法1:

 #coding=utf-8
 import re
 ​
 ret = re.sub(r"\d+", '998', "python = 997")
 print ret

运行结果:

方法2:

 #coding=utf-8
 import re
 ​
 def add(temp):
     strNum = temp.group()
     num = int(strNum) + 1
     return str(num)
 ​
 ret = re.sub(r"\d+", add, "python = 997")
 print ret
 ​
 ret = re.sub(r"\d+", add, "python = 99")
 print ret

运行结果:

 

练习

从下面的字符串中取出文本

 <div>
         <p>岗位职责:</p>
 <p>完成推荐算法、数据统计、接口、后台等服务器端相关工作</p>
 <p><br></p>
 <p>必备要求:</p>
 <p>良好的自我驱动力和职业素养,工作积极主动、结果导向</p>
 <p>&nbsp;<br></p>
 <p>技术要求:</p>
 <p>1、一年以上 Python 开发经验,掌握面向对象分析和设计,了解设计模式</p>
 <p>2、掌握HTTP协议,熟悉MVC、MVVM等概念以及相关WEB开发框架</p>
 <p>3、掌握关系数据库开发设计,掌握 SQL,熟练使用 MySQL/PostgreSQL 中的一种<br></p>
 <p>4、掌握NoSQL、MQ,熟练使用对应技术解决方案</p>
 <p>5、熟悉 Javascript/CSS/HTML5,JQuery、React、Vue.js</p>
 <p>&nbsp;<br></p>
 <p>加分项:</p>
 <p>大数据,数理统计,机器学习,sklearn,高性能,大并发。</p>
 ​
         </div>

compile()

用于编译正则表达式,生成一个正则表达式( Pattern )对象,供 match() 和 search() 这两个函数使用

 

 


finditer()—匹配所有

和 findall 类似,在字符串中找到正则表达式所匹配的所有子串,并把它们作为一个迭代器返回。

re.finditer(pattern, string, flags=0)

 content = 'Hello, I am Jerry, from Chongqing, a montain city, nice to meet you……'
 regex = re.compile('\w*o\w*')
 x = regex.findall(content)
 content = 'Hello, I am Jerry, from Chongqing, a montain city, nice to meet you……'
 regex = re.compile('\w*o\w*')
 y = regex.match(content)

 

 

 


split()—分割

split 方法按照能够匹配的子串将字符串分割后返回列表

需求:切割字符串

 #coding=utf-8
 import re
 ​
 ret = re.split(r":| ","info:xiaoZhang 33 shandong")
 print ret

运行结果:

 


表示字符

 

字符功能
.匹配任意1个字符(除了\n)
[ ]匹配[ ]中列举的字符
\d匹配数字,即0-9
\D匹配非数字,即不是数字
\s匹配空白,即 空格,tab键
\S匹配非空白
\w匹配单词字符,即a-z、A-Z、0-9、_
\W匹配非单词字符

 

示例1: . 匹配任意1个字符

 #coding=utf-8
 import re
 ret = re.match(".","a")
 ret.group()
 ret = re.match(".","b")
 ret.group()
 ret = re.match(".","M")
 ret.group()

示例2:[ ] 匹配[ ]中列举的字符

     #coding=utf-8
 ​
     import re
 ​
     # 如果hello的首字符小写,那么正则表达式需要小写的h
     ret = re.match("h","hello Python")
     ret.group()
     # 如果hello的首字符大写,那么正则表达式需要大写的H
     ret = re.match("H","Hello Python")
     ret.group()
 ​
     # 大小写h都可以的情况
     ret = re.match("[hH]","hello Python")
     ret.group()
     ret = re.match("[hH]","Hello Python")
     ret.group()
 ​
     # 匹配0到9第一种写法
     ret = re.match("[0123456789]","7Hello Python")
     ret.group()
 ​
     # 匹配0到9第二种写法
     ret = re.match("[0-9]","7Hello Python")
     ret.group()

运行结果:

示例3:\d 匹配数字,即0-9

     #coding=utf-8
 ​
     import re
 ​
     # 普通的匹配方式
     ret = re.match("嫦娥1号","嫦娥1号发射成功")
     print ret.group()
 ​
     ret = re.match("嫦娥2号","嫦娥2号发射成功")
     print ret.group()
 ​
     ret = re.match("嫦娥3号","嫦娥3号发射成功")
     print ret.group()
 ​
     # 使用\d进行匹配
     ret = re.match("嫦娥\d号","嫦娥1号发射成功")
     print ret.group()
 ​
     ret = re.match("嫦娥\d号","嫦娥2号发射成功")
     print ret.group()
 ​
     ret = re.match("嫦娥\d号","嫦娥3号发射成功")
     print ret.group()

运行结果:

 

原始字符串

 >>> mm = "c:\\a\\b\\c"
 >>> mm
 'c:\\a\\b\\c'
 >>> print(mm)
 c:\a\b\c
 >>> print(mm)
 c:\a\b\c
 >>> re.match("c:\\\\",mm).group()
 'c:\\'
 >>> ret = re.match("c:\\\\",mm).group()
 >>> print(ret)
 c:\
 >>> ret = re.match("c:\\\\a",mm).group()
 >>> print(ret)
 c:\a
 >>> ret = re.match(r"c:\\a",mm).group()
 >>> print(ret)
 c:\a
 >>> ret = re.match(r"c:\a",mm).group()
 Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
 AttributeError: 'NoneType' object has no attribute 'group'
 >>>

说明

Python中字符串前面加上 r 表示原生字符串

与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"\",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。

Python里的原生字符串很好地解决了这个问题,有了原始字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。

 >>> ret = re.match(r"c:\\a",mm).group()
 >>> print(ret)
 c:\a

 


表示数量

匹配多个字符的相关格式

字符功能
*匹配前一个字符出现0次或者无限次,即可有可无
+匹配前一个字符出现1次或者无限次,即至少有1次
?匹配前一个字符出现1次或者0次,即要么有1次,要么没有
{m}匹配前一个字符出现m次
{m,}匹配前一个字符至少出现m次
{m,n}匹配前一个字符出现从m到n次

示例1:*

需求:匹配出,一个字符串第一个字母为大小字符,后面都是小写字母并且这些小写字母可有可无

#coding=utf-8
import re

ret = re.match("[A-Z][a-z]*","Mm")
ret.group()

ret = re.match("[A-Z][a-z]*","Aabcdef")
ret.group()

运行结果:

示例2:+

需求:匹配出,变量名是否有效

#coding=utf-8
import re

ret = re.match("[a-zA-Z_]+[\w_]*","name1")
ret.group()

ret = re.match("[a-zA-Z_]+[\w_]*","_name")
ret.group()

ret = re.match("[a-zA-Z_]+[\w_]*","2_name")
ret.group()

运行结果:

示例3:?

需求:匹配出,0到99之间的数字

#coding=utf-8
import re

ret = re.match("[1-9]?[0-9]","7")
ret.group()

ret = re.match("[1-9]?[0-9]","33")
ret.group()

ret = re.match("[1-9]?[0-9]","09")
ret.group()

运行结果:

示例4:{m}

需求:匹配出,8到20位的密码,可以是大小写英文字母、数字、下划线

#coding=utf-8
import re

ret = re.match("[a-zA-Z0-9_]{6}","12a3g45678")
ret.group()

ret = re.match("[a-zA-Z0-9_]{8,20}","1ad12f23s34455ff66")
ret.group()

运行结果:


表示边界

字符功能
^匹配字符串开头
$匹配字符串结尾
\b匹配一个单词的边界
\B匹配非单词边界

示例1:$ 匹配字符串结尾

需求:匹配163.com的邮箱地址

#coding=utf-8

import re

# 正确的地址
ret = re.match("[\w]{4,20}@163\.com", "xiaoWang@163.com")
ret.group()

# 不正确的地址
ret = re.match("[\w]{4,20}@163\.com", "xiaoWang@163.comheihei")
ret.group()

# 通过$来确定末尾
ret = re.match("[\w]{4,20}@163\.com$", "xiaoWang@163.comheihei")
ret.group()

运行结果:

示例2: \b 匹配一个单词的边界

>>> re.match(r".*\bver\b", "ho ver abc").group()
'ho ver'

>>> re.match(r".*\bver\b", "ho verabc").group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'

>>> re.match(r".*\bver\b", "hover abc").group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'
>>>

示例3:\B 匹配非单词边界

>>> re.match(r".*\Bver\B", "hoverabc").group()
'hover'

>>> re.match(r".*\Bver\B", "ho verabc").group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'

>>> re.match(r".*\Bver\B", "hover abc").group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'

>>> re.match(r".*\Bver\B", "ho ver abc").group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'

 


匹配分组

字符功能
|匹配左右任意一个表达式
(ab)将括号中字符作为一个分组
\num引用分组num匹配到的字符串
(?P<name>)分组起别名
(?P=name)引用别名为name分组匹配到的字符串

示例1:|

需求:匹配出0-100之间的数字

#coding=utf-8

import re

ret = re.match("[1-9]?\d","8")
ret.group()

ret = re.match("[1-9]?\d","78")
ret.group()

# 不正确的情况
ret = re.match("[1-9]?\d","08")
ret.group()

# 修正之后的
ret = re.match("[1-9]?\d$","08")
ret.group()

# 添加|
ret = re.match("[1-9]?\d$|100","8")
ret.group()

ret = re.match("[1-9]?\d$|100","78")
ret.group()

ret = re.match("[1-9]?\d$|100","08")
ret.group()

ret = re.match("[1-9]?\d$|100","100")
ret.group()

运行结果:

示例2:( )

需求:匹配出163、126、qq邮箱之间的数字

#coding=utf-8

import re

ret = re.match("\w{4,20}@163\.com", "test@163.com")
ret.group()

ret = re.match("\w{4,20}@(163|126|qq)\.com", "test@126.com")
ret.group()

ret = re.match("\w{4,20}@(163|126|qq)\.com", "test@qq.com")
ret.group()

ret = re.match("\w{4,20}@(163|126|qq)\.com", "test@gmail.com")
ret.group()

运行结果:

练习:

>>> ret = re.match("([^-]*)-(\d+)","010-12345678")
>>> ret.group()
'010-12345678'
>>> ret.group(1)
'010'
>>> ret.group(2)
'12345678'

示例3:\

需求:匹配出<html>hh</html>

#coding=utf-8

import re

# 能够完成对正确的字符串的匹配
ret = re.match("<[a-zA-Z]*>\w*</[a-zA-Z]*>", "<html>hh</html>")
ret.group()

# 如果遇到非正常的html格式字符串,匹配出错
ret = re.match("<[a-zA-Z]*>\w*</[a-zA-Z]*>", "<html>hh</htmlbalabala>")
ret.group()

# 正确的理解思路:如果在第一对<>中是什么,按理说在后面的那对<>中就应该是什么

# 通过引用分组中匹配到的数据即可,但是要注意是元字符串,即类似 r""这种格式
ret = re.match(r"<([a-zA-Z]*)>\w*</\1>", "<html>hh</html>")
ret.group()

# 因为2对<>中的数据不一致,所以没有匹配出来
ret = re.match(r"<([a-zA-Z]*)>\w*</\1>", "<html>hh</htmlbalabala>")
ret.group()

运行结果:

示例4:\number

需求:匹配出<html><h1>www.itcast.cn</h1></html>

#coding=utf-8

import re

ret = re.match(r"<(\w*)><(\w*)>.*</\2></\1>", "<html><h1>www.itcast.cn</h1></html>")
ret.group()

ret = re.match(r"<(\w*)><(\w*)>.*</\2></\1>", "<html><h1>www.itcast.cn</h2></html>")
ret.group()

运行结果:

示例5:(?P<name>) (?P=name)

需求:匹配出<html><h1>www.itcast.cn</h1></html>

#coding=utf-8

import re

ret = re.match(r"<(?P<name1>\w*)><(?P<name2>\w*)>.*</(?P=name2)></(?P=name1)>", "<html><h1>www.itcast.cn</h1></html>")
ret.group()

ret = re.match(r"<(?P<name1>\w*)><(?P<name2>\w*)>.*</(?P=name2)></(?P=name1)>", "<html><h1>www.itcast.cn</h2></html>")
ret.group()

注意:(?P<name>)(?P=name)中的字母p大写

运行结果:


 

python贪婪和非贪婪

Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;

非贪婪则相反,总是尝试匹配尽可能少的字符。

在"*","?","+","{m,n}"后面加上?,使贪婪变成非贪婪。

>>> s="This is a number 234-235-22-423"
>>> r=re.match(".+(\d+-\d+-\d+-\d+)",s)
>>> r.group(1)
'4-235-22-423'
>>> r=re.match(".+?(\d+-\d+-\d+-\d+)",s)
>>> r.group(1)
'234-235-22-423'
>>>

正则表达式模式中使用到通配字,那它在从左到右的顺序求值时,会尽量“抓取”满足匹配最长字符串,在我们上面的例子里面,“.+”会从字符串的启始处抓取满足模式的最长字符,其中包括我们想得到的第一个整型字段的中的大部分,“\d+”只需一位字符就可以匹配,所以它匹配了数字“4”,而“.+”则匹配了从字符串起始到这个第一位数字4之前的所有字符。

解决方式:非贪婪操作符“?”,这个操作符可以用在"*","+","?"的后面,要求正则匹配的越少越好。

>>> re.match(r"aa(\d+)","aa2343ddd").group(1)
'2343'
>>> re.match(r"aa(\d+?)","aa2343ddd").group(1)
'2'
>>> re.match(r"aa(\d+)ddd","aa2343ddd").group(1) 
'2343'
>>> re.match(r"aa(\d+?)ddd","aa2343ddd").group(1)
'2343'
>>>

正则表达式修饰符

re.I 使匹配对大小写不敏感 ​ re.L 做本地化识别(locale-aware)匹配 ​ re.M 多行匹配,影响 ^ 和 $ ​ re.S 使 . 匹配包括换行在内的所有字符 ​ re.U 根据Unicode字符集解析字符。这个标志影响 \w, \W, \b, \B. ​ re.X 该标志通过给予你更灵活的格式以便你将正则表达式写得更易于理解。

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值