AI大模型开发3D试衣间在线试穿系统
大家好呀!最近不少小伙伴问我:“想入门 AI,但总觉得那些‘大模型’‘识别系统’太复杂,有没有实用高达上的一些应用?” 今天就给大家带来一个项目 ——用 OpenCV+Python 3D试衣间在线试穿系统、用到MediaPipe等工具,这里只做一些问题探讨,这个领域要深入了解的话还是要有一些理论基础的!包括AI换脸、数字人等高级话题;

一、系统概述
1. 应用场景
- 电商平台:在线试穿提升购买转化率
- 服装设计:快速验证设计效果
- 虚拟社交:Avatar换装互动
- 线下零售:智能试衣镜解决方案
2. 核心功能
-
基础功能:
- 用户头像与服装图片上传
- 智能关键点检测(面部/身体)
- 服装3D变形与贴合
- 多角度实时预览
-
进阶功能:
- 虚拟面料物理模拟(重力/褶皱)
- 环境光照匹配
- 多服装图层叠加
- 体型自适应调整
3. 技术亮点
-
AI增强:
- 基于GAN网络的服装纹理生成
- 姿势估计引导的服装变形
- 肤色与服装色彩协调算法
-
交互优化:
- 手势控制旋转/缩放
- 语音指令切换服装
- AR模式实时试穿
4. 扩展应用
- 虚拟时装秀
- 服装尺寸智能推荐
- 历史穿搭记录分析
- 社交平台分享功能
二、环境准备
1. 关键技术方案
- 人脸检测与对齐:使用MediaPipe Face Mesh获取468个面部关键点
- 特征提取:采用FaceNet或ArcFace提取人脸特征向量
- 风格迁移:基于GAN网络实现源人脸到目标人脸的风格转换
- 无缝融合:泊松融合算法确保边缘自然过渡
2. Python实现代码
import mediapipe as mp
import cv2
import numpy as np
# 初始化MediaPipe人脸模型
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True)
# 人脸检测与关键点提取
def detect_face_landmarks(image):
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return None
return [(landmark.x, landmark.y) for landmark in results.multi_face_landmarks[0].landmark]
# 人脸替换主函数
def face_swap(source_img, target_img):
# 1. 检测两张图片的人脸关键点
source_pts = detect_face_landmarks(source_img)
target_pts = detect_face_landmarks(target_img)
# 2. 计算Delaunay三角剖分
# ...(完整实现代码)
# 3. 应用仿射变换
# ...(完整实现代码)
# 4. 泊松融合
# ...(完整实现代码)
return swapped_image
3. 进阶优化方向
- 实时视频流处理
- 多角度人脸适配
- 光影一致性调整
- 表情迁移技术
三、Flask网页开发
pip install flask opencv-python numpy
1. 基础框架
from flask import Flask, render_template, request
import cv2
import os
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'static/uploads'
@app.route('/')
def index():
return render_template('3dClothes.html')
2. 文件上传处理
@app.route('/upload', methods=['POST'])
def upload():
# 获取用户上传的头像和服装
face_img = request.files['face']
cloth_img = request.files['cloth']
# 保存到上传目录
face_path = os.path.join(app.config['UPLOAD_FOLDER'], face_img.filename)
cloth_path = os.path.join(app.config['UPLOAD_FOLDER'], cloth_img.filename)
face_img.save(face_path)
cloth_img.save(cloth_path)
# 调用OpenCV处理函数
result = try_on(face_path, cloth_path)
return result
四、OpenCV图像处理
1. 关键点检测
def get_landmarks(image):
"""
使用MediaPipe检测468个面部关键点和33个身体关键点
参数:
image: 输入图像(BGR格式)
返回:
landmarks: 关键点坐标列表(x,y)
connections: 关键点连接关系
"""
import mediapipe as mp
mp_face = mp.solutions.face_mesh
mp_pose = mp.solutions.pose
with mp_face.FaceMesh(static_image_mode=True) as face_mesh,\
mp_pose.Pose(static_image_mode=True) as pose:
# 转换到RGB格式
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 面部关键点检测
face_results = face_mesh.process(rgb)
face_landmarks = []
if face_results.multi_face_landmarks:
for landmark in face_results.multi_face_landmarks[0].landmark:
face_landmarks.append((int(landmark.x * image.shape[1]),
int(landmark.y * image.shape[0])))
# 身体关键点检测
pose_results = pose.process(rgb)
body_landmarks = []
if pose_results.pose_landmarks:
for landmark in pose_results.pose_landmarks.landmark:
body_landmarks.append((int(landmark.x * image.shape[1]),
int(landmark.y * image.shape[0])))
return face_landmarks + body_landmarks
2. 服装变形算法
def warp_cloth(body_points, cloth_img):
"""
基于Delaunay三角剖分的服装变形算法
参数:
body_points: 身体关键点坐标
cloth_img: 服装模板图像
返回:
warped_cloth: 变形后的服装图像
"""
# 1. 服装模板关键点定义
cloth_points = define_cloth_template_points(cloth_img.shape)
# 2. Delaunay三角剖分
rect = (0, 0, cloth_img.shape[1], cloth_img.shape[0])
subdiv = cv2.Subdiv2D(rect)
for p in cloth_points:
subdiv.insert(p)
# 3. 获取三角形列表
triangles = subdiv.getTriangleList()
# 4. 对每个三角形进行仿射变换
warped_cloth = np.zeros_like(cloth_img)
for t in triangles:
# 获取三角形顶点
pt1 = (t[0], t[1])
pt2 = (t[2], t[3])
pt3 = (t[4], t[5])
# 计算变换矩阵
src_tri = np.array([pt1, pt2, pt3], np.float32)
dst_tri = np.array([body_points[i] for i in
[find_corresponding_point(pt1, cloth_points),
find_corresponding_point(pt2, cloth_points),
find_corresponding_point(pt3, cloth_points)]], np.float32)
# 执行仿射变换
warp_mat = cv2.getAffineTransform(src_tri, dst_tri)
warped_tri = cv2.warpAffine(cloth_img, warp_mat,
(cloth_img.shape[1], cloth_img.shape[0]),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_REFLECT_101)
# 合并结果
cv2.fillConvexPoly(warped_cloth, dst_tri.astype(int), 0)
warped_cloth = warped_cloth + warped_tri
return warped_cloth
3. 光照融合
def blend_images(face, warped_cloth):
"""
基于泊松融合的光照协调算法
参数:
face: 人脸区域图像
warped_cloth: 变形后的服装图像
返回:
blended: 融合后的结果
"""
# 1. 创建掩模
mask = 255 * np.ones(warped_cloth.shape, warped_cloth.dtype)
# 2. 计算融合中心点
center = (face.shape[1]//2, face.shape[0]//2)
# 3. 泊松融合
blended = cv2.seamlessClone(warped_cloth, face, mask, center,
cv2.NORMAL_CLONE)
# 4. 颜色校正
blended = match_histograms(blended, face)
return blended
4. 辅助函数
def define_cloth_template_points(shape):
"""定义服装模板的关键点位置"""
h, w = shape[:2]
return [
(w//4, h//10), # 左肩
(w//2, h//10), # 领口中心
(3*w//4, h//10), # 右肩
(w//5, h//3), # 左袖
(4*w//5, h//3), # 右袖
(w//4, 9*h//10), # 左下摆
(3*w//4, 9*h//10) # 右下摆
]
def match_histograms(src, target):
"""直方图匹配实现颜色协调"""
for channel in range(3):
src_hist = cv2.calcHist([src], [channel], None, [256], [0,256])
target_hist = cv2.calcHist([target], [channel], None, [256], [0,256])
src_cdf = np.cumsum(src_hist)
target_cdf = np.cumsum(target_hist)
# 归一化
src_cdf = src_cdf / src_cdf[-1]
target_cdf = target_cdf / target_cdf[-1]
# 创建LUT
lut = np.interp(src_cdf, target_cdf, np.arange(256))
# 应用查找表
src[:,:,channel] = cv2.LUT(src[:,:,channel].astype(np.uint8), lut)
return src
## 五、前端页面设计
### 5.1 炫酷3D试衣界面实现
```html:/templates/3dClothes.html
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>AI 3D试衣间</title>
<style>
body {
font-family: 'Arial', sans-serif;
background: linear-gradient(135deg, #1a1a2e, #16213e);
color: white;
margin: 0;
padding: 0;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
header {
text-align: center;
padding: 20px 0;
}
h1 {
font-size: 2.5rem;
margin-bottom: 10px;
background: linear-gradient(to right, #00dbde, #fc00ff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.upload-section {
display: flex;
justify-content: space-around;
margin: 30px 0;
flex-wrap: wrap;
}
.upload-box {
width: 45%;
min-width: 300px;
background: rgba(255, 255, 255, 0.1);
border-radius: 15px;
padding: 20px;
backdrop-filter: blur(10px);
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
margin-bottom: 20px;
}
.preview-section {
display: flex;
justify-content: center;
margin: 30px 0;
}
#resultCanvas {
max-width: 100%;
border-radius: 15px;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
}
.controls {
display: flex;
justify-content: center;
gap: 20px;
margin: 20px 0;
}
button {
padding: 12px 24px;
border: none;
border-radius: 50px;
background: linear-gradient(45deg, #00dbde, #fc00ff);
color: white;
font-weight: bold;
cursor: pointer;
transition: all 0.3s;
}
button:hover {
transform: translateY(-3px);
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.2);
}
.loading {
display: none;
text-align: center;
margin: 20px 0;
}
.spinner {
border: 5px solid rgba(255, 255, 255, 0.3);
border-radius: 50%;
border-top: 5px solid #00dbde;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
margin: 0 auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
</head>
<body>
<div class="container">
<header>
<h1>AI 3D虚拟试衣间</h1>
<p>上传您的照片和服装,体验智能3D试穿效果</p>
</header>
<div class="upload-section">
<div class="upload-box">
<h2>上传头像</h2>
<input type="file" id="faceInput" accept="image/*">
<div class="preview" id="facePreview"></div>
</div>
<div class="upload-box">
<h2>上传服装</h2>
<input type="file" id="clothesInput" accept="image/*">
<div class="preview" id="clothesPreview"></div>
</div>
</div>
<div class="loading" id="loading">
<div class="spinner"></div>
<p>AI正在处理您的试衣请求...</p>
</div>
<div class="preview-section">
<canvas id="resultCanvas" width="800" height="800"></canvas>
</div>
<div class="controls">
<button id="tryBtn">立即试穿</button>
<button id="saveBtn">保存效果</button>
<button id="resetBtn">重新开始</button>
</div>
</div>
<script>
// 文件上传预览
document.getElementById('faceInput').addEventListener('change', function(e) {
const file = e.target.files[0];
if (file) {
const reader = new FileReader();
reader.onload = function(event) {
const preview = document.getElementById('facePreview');
preview.innerHTML = `<img src="${event.target.result}" style="max-width:100%; border-radius:10px;">`;
};
reader.readAsDataURL(file);
}
});
document.getElementById('clothesInput').addEventListener('change', function(e) {
const file = e.target.files[0];
if (file) {
const reader = new FileReader();
reader.onload = function(event) {
const preview = document.getElementById('clothesPreview');
preview.innerHTML = `<img src="${event.target.result}" style="max-width:100%; border-radius:10px;">`;
};
reader.readAsDataURL(file);
}
});
// 试穿按钮点击事件
document.getElementById('tryBtn').addEventListener('click', function() {
const faceFile = document.getElementById('faceInput').files[0];
const clothesFile = document.getElementById('clothesInput').files[0];
if (!faceFile || !clothesFile) {
alert('请先上传头像和服装图片!');
return;
}
document.getElementById('loading').style.display = 'block';
// 模拟处理延迟
setTimeout(function() {
// 这里应该调用后端API进行实际处理
// 现在只是显示一个示例效果
const canvas = document.getElementById('resultCanvas');
const ctx = canvas.getContext('2d');
// 清空画布
ctx.clearRect(0, 0, canvas.width, canvas.height);
// 这里应该显示实际的处理结果
ctx.fillStyle = '#333';
ctx.font = '20px Arial';
ctx.textAlign = 'center';
ctx.fillText('AI试穿效果将显示在这里', canvas.width/2, canvas.height/2);
document.getElementById('loading').style.display = 'none';
}, 2000);
});
// 重置按钮
document.getElementById('resetBtn').addEventListener('click', function() {
document.getElementById('faceInput').value = '';
document.getElementById('clothesInput').value = '';
document.getElementById('facePreview').innerHTML = '';
document.getElementById('clothesPreview').innerHTML = '';
document.getElementById('resultCanvas').getContext('2d').clearRect(0, 0, 800, 800);
});
</script>
</body>
</html>
五、 页面功能说明
-
双文件上传区:
- 左侧上传用户头像
- 右侧上传服装图片
- 实时预览上传的图片
-
3D试衣效果展示区:
- 居中显示800x800像素的画布
- 使用Canvas API渲染最终效果
-
控制按钮组:
- “立即试穿”:触发AI处理流程
- “保存效果”:下载合成图片
- “重新开始”:重置所有输入
-
加载动画:
- 处理过程中显示旋转加载图标
- 提示用户AI正在工作
-
炫酷UI设计:
- 渐变色标题和按钮
- 毛玻璃效果面板
- 平滑的动画过渡
- 响应式布局适配不同设备
六、进阶功能
6.1 多服装同时展示
# 在Flask后端添加多服装处理逻辑
def handle_multiple_clothes(uploaded_files):
"""
处理多件服装同时展示
参数:
uploaded_files: 用户上传的多件服装图片列表
返回:
合成后的试穿效果图
"""
# 1. 对每件服装单独进行关键点检测和变形
processed_clothes = []
for clothes_file in uploaded_files:
clothes_img = cv2.imdecode(np.frombuffer(clothes_file.read(), np.uint8), cv2.IMREAD_COLOR)
warped_clothes = warp_clothes(face_keypoints, clothes_img)
processed_clothes.append(warped_clothes)
# 2. 图层叠加处理
result = base_image.copy()
for clothes in processed_clothes:
result = blend_images(result, clothes, 0.7) # 70%透明度叠加
# 3. 返回最终合成效果
return result
实现要点:
- 前端支持多文件上传(添加multiple属性)
<input type="file" id="clothesInput" accept="image/*" multiple> - 服装叠加顺序控制(通过拖动排序)
- 每件服装独立透明度调节
6.2 虚拟换背景
# 背景替换功能实现
def change_background(face_img, bg_img):
"""
实现虚拟背景替换
参数:
face_img: 用户头像(带alpha通道)
bg_img: 新背景图片
返回:
合成后的图片
"""
# 1. 使用MediaPipe获取人体分割掩模
segmentation_mask = get_human_segmentation(face_img)
# 2. 对背景进行透视变换匹配人体角度
bg_img = warp_perspective(bg_img, face_keypoints)
# 3. 使用泊松融合实现自然过渡
result = cv2.seamlessClone(
face_img, bg_img, segmentation_mask,
(face_img.shape[1]//2, face_img.shape[0]//2),
cv2.NORMAL_CLONE
)
return result
技术亮点:
- 基于MediaPipe Selfie Segmentation的高精度人像分割
- 背景透视变换匹配人体姿势
- 泊松融合实现无缝过渡
6.3 服装推荐算法
# 基于内容的服装推荐
def recommend_clothes(user_preferences):
"""
根据用户偏好推荐服装
参数:
user_preferences: 包含颜色/风格/季节等偏好
返回:
推荐服装列表
"""
# 1. 特征提取
color_hist = get_color_histogram(user_preferences['current_outfit'])
style = classify_style(user_preferences['style_pref'])
# 2. 相似度计算
recommendations = []
for item in clothing_database:
score = calculate_similarity(
color_hist,
item['color'],
style,
item['style']
)
recommendations.append((item, score))
# 3. 排序返回Top N推荐
return sorted(recommendations, key=lambda x: x[1], reverse=True)[:5]
算法原理:
- 基于颜色直方图的相似度匹配
- 服装风格分类模型(VGG16迁移学习)
- 多维度加权评分(颜色60%+风格30%+季节10%)
- 多服装同时展示
- 虚拟换背景
- 服装推荐算法
七、部署上线
flask run --host=0.0.0.0 --port=5000
八、3D人物建模与动画实现
8.1 基于Blender的人物建模
# Blender Python脚本示例 - 创建基础人体模型
import bpy
# 创建基础人体网格
def create_human_base():
# 添加细分立方体作为基础
bpy.ops.mesh.primitive_cube_add(size=2)
base = bpy.context.object
base.name = "Human_Base"
# 应用细分修改器
subdiv = base.modifiers.new(name="Subdivision", type='SUBSURF')
subdiv.levels = 2
# 进入编辑模式调整形态
bpy.ops.object.mode_set(mode='EDIT')
# 这里添加具体的顶点编辑代码
# ...
# 返回对象模式
bpy.ops.object.mode_set(mode='OBJECT')
return base
# 添加骨骼系统
def add_armature():
bpy.ops.object.armature_add(enter_editmode=True)
armature = bpy.context.object
# 创建基础骨骼结构
bone = armature.data.edit_bones.new('Hip')
bone.head = (0, 0, 1)
bone.tail = (0, 0, 1.2)
# 添加更多骨骼...
bpy.ops.object.mode_set(mode='OBJECT')
return armature
建模流程:
- 使用细分立方体创建基础人体形态
- 通过顶点编辑塑造身体各部分
- 添加细分曲面修饰器平滑模型
- 创建骨骼系统实现动画控制
8.2 使用Three.js实现网页3D动画
// Three.js人物动画实现
const initHumanAnimation = () => {
// 1. 加载GLTF人物模型
const loader = new GLTFLoader();
loader.load(
'models/human.glb',
(gltf) => {
const model = gltf.scene;
scene.add(model);
// 2. 设置动画混合器
const mixer = new THREE.AnimationMixer(model);
const clips = gltf.animations;
// 3. 播放指定动画
const walkClip = THREE.AnimationClip.findByName(clips, 'Walk');
const action = mixer.clipAction(walkClip);
action.play();
// 4. 动画循环
const clock = new THREE.Clock();
function animate() {
requestAnimationFrame(animate);
const delta = clock.getDelta();
mixer.update(delta);
renderer.render(scene, camera);
}
animate();
}
);
};
动画技术要点:
- 使用GLTF格式加载预制的3D人物模型
- 通过AnimationMixer管理动画状态
- 支持多种动作混合(走、跑、跳等)
- 实时更新动画帧率
8.3 动作捕捉数据驱动
# MediaPipe动作捕捉数据转3D动画
def mp_to_animation(pose_landmarks):
"""
将MediaPipe检测到的关键点转换为3D动画控制参数
参数:
pose_landmarks: MediaPipe检测到的33个人体关键点
返回:
骨骼旋转欧拉角字典
"""
# 1. 计算骨骼向量
shoulder_vec = pose_landmarks[12] - pose_landmarks[11]
hip_vec = pose_landmarks[24] - pose_landmarks[23]
# 2. 转换为欧拉角
rotations = {
'spine': vec_to_euler(hip_vec),
'shoulders': vec_to_euler(shoulder_vec),
# 其他骨骼...
}
return rotations
实时驱动方案:
- 使用MediaPipe获取实时2D关键点
- 通过逆运动学(IK)估算3D骨骼旋转
- 驱动Blender/Three.js模型同步运动
- 支持自定义动作捕捉设备接入
九、AI人脸替换技术实现
9.1技术原理
深度伪造检测
- Xception网络架构:深度可分离卷积减少参数量
- 特征提取:在ImageNet预训练基础上微调
- 检测指标:关注面部边界伪影和纹理不一致
高保真替换
- StyleGAN2潜空间:512维W+潜变量表示
- 插值策略:球面线性插值(Slerp)保持特征连续性
- 细节保留:使用噪声输入层控制局部细节
动态适配
- LSTM时序建模:处理视频序列的表情变化
- 关键点驱动:MediaPipe输出作为LSTM输入
- 表情编码:使用3DMM(3D形变模型)参数化表情
9.2核心代码实现
# 深度伪造检测模型
from tensorflow.keras.models import load_model
def detect_deepfake(image):
model = load_model('deepfake_detector.h5')
img = preprocess(image)
pred = model.predict(img)
return pred[0][0] > 0.5
# 高保真人脸替换
def high_fidelity_swap(source, target):
# 1. 提取StyleGAN2潜变量
src_latent = gan_encoder(source)
tgt_latent = gan_encoder(target)
# 2. 潜空间插值
mixed = 0.7*src_latent + 0.3*tgt_latent
# 3. 生成混合人脸
return gan_decoder(mixed)
9.3 应用场景
- 影视特效制作
- 虚拟主播生成
- 隐私保护脱敏
- 历史人物复原
十、代码介绍
10.1模拟代码参考3d_clothes_flask.py
from flask import Flask, render_template, request, redirect, url_for, send_from_directory
import os
from werkzeug.utils import secure_filename
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['ALLOWED_EXTENSIONS'] = {'png', 'jpg', 'jpeg', 'gif'}
# 确保上传文件夹存在
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
@app.route('/')
def index():
return render_template('3d_clothes.html')
@app.route('/upload', methods=['POST'])
def upload_files():
# 处理头像上传
if 'face' not in request.files:
return redirect(request.url)
face_file = request.files['face']
# 处理服装上传
clothes_files = request.files.getlist('clothes')
if face_file.filename == '' or len(clothes_files) == 0:
return redirect(request.url)
if face_file and allowed_file(face_file.filename):
face_filename = secure_filename(face_file.filename)
face_path = os.path.join(app.config['UPLOAD_FOLDER'], 'face_' + face_filename)
face_file.save(face_path)
clothes_paths = []
for i, clothes_file in enumerate(clothes_files):
if clothes_file and allowed_file(clothes_file.filename):
clothes_filename = secure_filename(clothes_file.filename)
clothes_path = os.path.join(app.config['UPLOAD_FOLDER'], f'clothes_{i}_{clothes_filename}')
clothes_file.save(clothes_path)
clothes_paths.append(clothes_path)
# 这里应该添加图片处理逻辑
# 生成结果图片路径
result_path = os.path.join(app.config['UPLOAD_FOLDER'], 'result.png')
return redirect(url_for('show_result', result=result_path))
@app.route('/result')
def show_result():
result_path = request.args.get('result')
return render_template('result.html', result_image=result_path)
@app.route('/download')
def download_result():
return send_from_directory(app.config['UPLOAD_FOLDER'], 'result.png', as_attachment=True)
if __name__ == '__main__':
app.run(debug=True)
10.2前端布局
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>AI 3D试衣间</title>
<style>
body {
font-family: 'Arial', sans-serif;
background: linear-gradient(135deg, #1a1a2e, #16213e);
color: white;
margin: 0;
padding: 0;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
header {
text-align: center;
padding: 20px 0;
}
h1 {
font-size: 2.5rem;
margin-bottom: 10px;
background: linear-gradient(to right, #00dbde, #fc00ff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.upload-section {
display: flex;
justify-content: space-around;
margin: 30px 0;
flex-wrap: wrap;
}
.upload-box {
width: 45%;
min-width: 300px;
background: rgba(255, 255, 255, 0.1);
border-radius: 15px;
padding: 20px;
backdrop-filter: blur(10px);
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
margin-bottom: 20px;
}
.preview-section {
display: flex;
justify-content: center;
margin: 30px 0;
}
#resultImage {
max-width: 100%;
border-radius: 15px;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
}
.controls {
display: flex;
justify-content: center;
gap: 20px;
margin: 20px 0;
}
button {
padding: 12px 24px;
border: none;
border-radius: 50px;
background: linear-gradient(45deg, #00dbde, #fc00ff);
color: white;
font-weight: bold;
cursor: pointer;
transition: all 0.3s;
}
button:hover {
transform: translateY(-3px);
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.2);
}
.loading {
display: none;
text-align: center;
margin: 20px 0;
}
.spinner {
border: 5px solid rgba(255, 255, 255, 0.3);
border-radius: 50%;
border-top: 5px solid #00dbde;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
margin: 0 auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
</head>
<body>
<div class="container">
<header>
<h1>AI 3D虚拟试衣间</h1>
<p>上传您的照片和服装,体验智能3D试穿效果</p>
</header>
<form action="/upload" method="post" enctype="multipart/form-data">
<div class="upload-section">
<div class="upload-box">
<h2>上传头像</h2>
<input type="file" id="face" name="face" accept="image/*">
<div class="preview" id="facePreview"></div>
</div>
<div class="upload-box">
<h2>上传服装</h2>
<input type="file" id="clothes" name="clothes" accept="image/*" multiple>
<div class="preview" id="clothesPreview"></div>
</div>
</div>
<div class="loading" id="loading">
<div class="spinner"></div>
<p>AI正在处理您的试衣请求...</p>
</div>
<div class="controls">
<button type="submit">立即试穿</button>
<button type="button" onclick="window.location.href='/'">重新开始</button>
</div>
</form>
</div>
<script>
// 文件上传预览
document.getElementById('face').addEventListener('change', function(e) {
const file = e.target.files[0];
if (file) {
const reader = new FileReader();
reader.onload = function(event) {
const preview = document.getElementById('facePreview');
preview.innerHTML = `<img src="${event.target.result}" style="max-width:100%; border-radius:10px;">`;
};
reader.readAsDataURL(file);
}
});
document.getElementById('clothes').addEventListener('change', function(e) {
const files = e.target.files;
const preview = document.getElementById('clothesPreview');
preview.innerHTML = '';
for (let i = 0; i < files.length; i++) {
const reader = new FileReader();
reader.onload = function(event) {
preview.innerHTML += `<div style="margin-bottom:10px;">
<img src="${event.target.result}" style="max-width:100%; border-radius:10px;">
<p>服装${i+1}</p>
</div>`;
};
reader.readAsDataURL(files[i]);
}
});
// 提交表单时显示加载动画
document.querySelector('form').addEventListener('submit', function() {
document.getElementById('loading').style.display = 'block';
});
</script>
</body>
</html>
10.3 如果是静态页面效果,可以自己绑定数据
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>AI 3D试衣间</title>
<style>
body {
font-family: 'Arial', sans-serif;
background: linear-gradient(135deg, #1a1a2e, #16213e);
color: white;
margin: 0;
padding: 0;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
header {
text-align: center;
padding: 20px 0;
}
h1 {
font-size: 2.5rem;
margin-bottom: 10px;
background: linear-gradient(to right, #00dbde, #fc00ff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.upload-section {
display: flex;
justify-content: space-around;
margin: 30px 0;
flex-wrap: wrap;
}
.upload-box {
width: 45%;
min-width: 300px;
background: rgba(255, 255, 255, 0.1);
border-radius: 15px;
padding: 20px;
backdrop-filter: blur(10px);
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
margin-bottom: 20px;
}
.preview-section {
display: flex;
justify-content: center;
margin: 30px 0;
}
#resultCanvas {
max-width: 100%;
border-radius: 15px;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
}
.controls {
display: flex;
justify-content: center;
gap: 20px;
margin: 20px 0;
}
button {
padding: 12px 24px;
border: none;
border-radius: 50px;
background: linear-gradient(45deg, #00dbde, #fc00ff);
color: white;
font-weight: bold;
cursor: pointer;
transition: all 0.3s;
}
button:hover {
transform: translateY(-3px);
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.2);
}
.loading {
display: none;
text-align: center;
margin: 20px 0;
}
.spinner {
border: 5px solid rgba(255, 255, 255, 0.3);
border-radius: 50%;
border-top: 5px solid #00dbde;
width: 50px;
height: 50px;
animation: spin 1s linear infinite;
margin: 0 auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
</head>
<body>
<div class="container">
<header>
<h1>AI 3D虚拟试衣间</h1>
<p>上传您的照片和服装,体验智能3D试穿效果</p>
</header>
<div class="upload-section">
<div class="upload-box">
<h2>上传头像</h2>
<input type="file" id="faceInput" accept="image/*">
<div class="preview" id="facePreview"></div>
</div>
<div class="upload-box">
<h2>上传服装</h2>
<input type="file" id="clothesInput" accept="image/*" multiple>
<div class="preview" id="clothesPreview"></div>
</div>
</div>
<div class="loading" id="loading">
<div class="spinner"></div>
<p>AI正在处理您的试衣请求...</p>
</div>
<div class="preview-section">
<canvas id="resultCanvas" width="800" height="800"></canvas>
</div>
<div class="controls">
<button id="tryBtn">立即试穿</button>
<button id="saveBtn">保存效果</button>
<button id="resetBtn">重新开始</button>
</div>
</div>
<script>
// 文件上传预览
document.getElementById('faceInput').addEventListener('change', function(e) {
const file = e.target.files[0];
if (file) {
const reader = new FileReader();
reader.onload = function(event) {
const preview = document.getElementById('facePreview');
preview.innerHTML = `<img src="${event.target.result}" style="max-width:100%; border-radius:10px;">`;
};
reader.readAsDataURL(file);
}
});
document.getElementById('clothesInput').addEventListener('change', function(e) {
const files = e.target.files;
const preview = document.getElementById('clothesPreview');
preview.innerHTML = '';
for (let i = 0; i < files.length; i++) {
const reader = new FileReader();
reader.onload = function(event) {
preview.innerHTML += `<div style="margin-bottom:10px;">
<img src="${event.target.result}" style="max-width:100%; border-radius:10px;">
<p>服装${i+1}</p>
</div>`;
};
reader.readAsDataURL(files[i]);
}
});
// 试穿按钮点击事件
document.getElementById('tryBtn').addEventListener('click', function() {
const faceFile = document.getElementById('faceInput').files[0];
const clothesFiles = document.getElementById('clothesInput').files;
if (!faceFile || !clothesFiles || clothesFiles.length === 0) {
alert('请先上传头像和至少一件服装图片!');
return;
}
document.getElementById('loading').style.display = 'block';
// 模拟处理延迟
setTimeout(function() {
const canvas = document.getElementById('resultCanvas');
const ctx = canvas.getContext('2d');
// 清空画布
ctx.clearRect(0, 0, canvas.width, canvas.height);
// 这里应该显示实际的处理结果
ctx.fillStyle = '#333';
ctx.font = '20px Arial';
ctx.textAlign = 'center';
ctx.fillText('AI试穿效果将显示在这里', canvas.width/2, canvas.height/2);
document.getElementById('loading').style.display = 'none';
}, 2000);
});
// 重置按钮
document.getElementById('resetBtn').addEventListener('click', function() {
document.getElementById('faceInput').value = '';
document.getElementById('clothesInput').value = '';
document.getElementById('facePreview').innerHTML = '';
document.getElementById('clothesPreview').innerHTML = '';
document.getElementById('resultCanvas').getContext('2d').clearRect(0, 0, 800, 800);
});
</script>
</body>
</html>
10.4 预览效果

十一、下期预告
本期掌了解了一些关于AI换装的一些思路、技术细节,只做初步的讨论,后续介绍《AI图片换脸》、《AI视频换脸技术的一些应用》《开发自己的AI数字人》,觉得还不错就点个赞吧!
AI大模型开发3D试衣间系统

756

被折叠的 条评论
为什么被折叠?



