动态规划题目汇总练习

1、不同路径 https://leetcode-cn.com/problems/unique-paths/

一个机器人位于一个 m x n 网格的左上角 ,机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角。

问总共有多少条不同的路径?

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        # dp[i][j]表示到达i,j的最多路径
        # 状态转移方程:dp[i][j] = dp[i-1][j]+dp[i][j-1]
        # 边界值:第一行、第一列都为1,因为在第一行只能往左走,在第一列只能往下走。
        dp=[[1 for i in range(n)] for j in range(m)]
        for i in range(1,m):
            for j in range(1,n):
                dp[i][j] = dp[i-1][j]+dp[i][j-1]

        return dp[-1][-1]

2、不同路径 II:https://leetcode-cn.com/problems/unique-paths-ii/

一个机器人位于一个 m x n 网格的左上角 ,机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

分析:与上一题相比,多加一个条件判断即可。就是,如果当前位置有障碍物,就把当前位置的路径条数设置为0。

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        m,n = len(obstacleGrid),len(obstacleGrid[0])
        # 起始位置
        if obstacleGrid[0][0] == 1:
            return 0

        # 第一行
        # 如果有障碍物,则设置当前位置为0;否则为前一个位置的值
        obstacleGrid[0][0]=1
        for i in range(1,m):
            if obstacleGrid[i][0] == 1:
                obstacleGrid[i][0] = 0
            else:
                obstacleGrid[i][0] = obstacleGrid[i-1][0]
        
        # 第一列
        for i in range(1,n):
            if obstacleGrid[0][i] == 1:
                obstacleGrid[0][i] = 0
            else:
                obstacleGrid[0][i] = obstacleGrid[0][i-1]
        
        for i in range(1,m):
            for j in range(1,n):
                if obstacleGrid[i][j] == 1:
                    obstacleGrid[i][j] = 0
                else:
                    obstacleGrid[i][j] = obstacleGrid[i-1][j] + obstacleGrid[i][j-1]
        return obstacleGrid[-1][-1]

3、最小路径和:https://leetcode-cn.com/problems/minimum-path-sum/

 

 

发布了83 篇原创文章 · 获赞 5 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览