模型部署之Convolution与BatchNorm合并

BatchNorm(BN)层一般置于卷积层之后,在推理时可以和卷积层合并,很多加速组件在计算图优化过程中都会进行这一步操作,这里主要科普下这一合并操作的原理。

卷积层参数包括权重w和偏置b,其计算过程为:

y=w*x+b                                                                              (1)

BN层参数包括均值\mu,方差\sigma,缩放因子\gamma,偏置\beta,以及一个较小的数\varepsilon(防止分布为0),其计算过程为:

z=\gamma *\frac{\hat{x}-\mu }{\sqrt{\sigma ^{2}+\varepsilon }}+\beta                                                                       (2)

将公式(1)代入公式(2),即\hat{x}=y,可得:

z=\gamma *\frac{w*x+b-\mu }{\sqrt{\sigma ^{2}+\varepsilon }}+\beta=(\frac{w}{\sqrt{\sigma ^{2}+\varepsilon}}*\gamma )*x+(\frac{b-\mu }{\sqrt{\sigma ^{2}+\varepsilon}}*\gamma+\beta)                            (3)

于是,合并后仅为一个卷积操作,其权值为\frac{w}{\sqrt{\sigma ^{2}+\varepsilon}}*\gamma,偏置为\frac{b-\mu }{\sqrt{\sigma ^{2}+\varepsilon}}*\gamma+\beta

  • 1
    点赞
  • 1
    收藏 更改收藏夹
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jefferyqian

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值