import requests
import csv
url = 'http://example.com/weather-api'
response = requests.get(url)
weather_data = response.json()
with open('weather_data.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Date', 'Temperature', 'Humidity'])
for data in weather_data:
writer.writerow([data['date'], data['temperature'], data['humidity']])
代码解析: 在这个案例中,我们使用requests库发送HTTP请求获取天气数据,并将数据保存到CSV文件中。首先,我们发送GET请求获取天气数据的JSON响应。然后,我们使用csv库创建一个CSV文件并写入数据。通过遍历天气数据,我们将每条数据的日期、温度和湿度写入CSV文件。
案例二:爬取图片并下载
import requests
url = 'http://example.com/image-gallery'
response = requests.get(url)
image_urls = ['http://example.com/image1.jpg', 'http://example.com/image2.jpg', 'http://example.com/image3.jpg']
for image_url in image_urls:
image_response = requests.get(image_url)
with open(image_url.split('/')[-1], 'wb') as file:
file.write(image_response.content)
代码解析: 这个案例演示了如何爬取网站上的图片,并将图片下载到本地。我们发送GET请求获取图片链接的网页,并遍历图片链接列表。对于每个图片链接,我们发送GET请求获取图片的响应,并使用with open语句打开一个文件,将图片的内容写入文件。
案例三:爬取电影评论
import requests
from bs4 import BeautifulSoup
url = 'http://example.com/movie-reviews'
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
reviews = soup.find_all('div', class_='review')
for review in reviews:
title = review.find('h2').text
content = review.find('p').text
rating = review.find('span', class_='rating').text
print('Title:', title)
print('Content:', content)
print('Rating:', rating)
print('---')
代码解析: 这个案例展示了如何爬取电影网站上的电影评论,并提取关键信息。我们发送GET请求获取电影评论页面的HTML响应,然后使用BeautifulSoup库对HTML响应进行解析。通过find_all方法,我们找到class为’review’的div元素,这些元素包含了电影评论。针对每个电影评论,我们使用find方法找到标题、内容和评分,并将其打印出来。
案例四:爬取新闻文章并进行文本分析
import requests
from bs4 import BeautifulSoup
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
url = 'http://example.com/news-articles'
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
articles = soup.find_all('article')
for article in articles:
title = article.find('h2').text
content = article.find('div', class_='content').text
tokens = word_tokenize(content)
frequency_distribution = FreqDist(tokens)
top_words = frequency_distribution.most_common(10)
print('Title:', title)
print('Content:', content)
print('Top Words:', top_words)
print('---')
代码解析: 这个案例演示了如何爬取新闻网站的文章,并使用自然语言处理库进行文本分析。我们发送GET请求获取新闻文章页面的HTML响应,然后使用BeautifulSoup库对HTML响应进行解析。通过find_all方法,我们找到所有的article元素,这些元素包含了新闻文章。针对每篇文章,我们使用find方法找到标题和内容,并将其打印出来。我们使用nltk库中的word_tokenize函数对内容进行分词,并使用FreqDist类计算词频分布。最后,我们打印出词频最高的前10个单词。
案例五:爬取股票数据并进行分析
import requests
import pandas as pd
url = 'http://example.com/stock-data'
response = requests.get(url)
data = response.json()
df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date'])
# 计算股票收益率
df['Return'] = df['Close'].pct_change()
# 计算股票收益率的统计信息
return_stats = df['Return'].describe()
print('Stock Return Statistics:')
print(return_stats)
代码解析: 这个案例展示了如何爬取股票数据,并使用pandas库进行数据分析。我们发送GET请求获取股票数据的JSON响应,然后将其转换为DataFrame对象。我们使用pd.to_datetime()函数将日期列转换为日期时间格式。然后,我们计算股票的收益率,通过计算每日收盘价的变化百分比。最后,我们使用describe()函数计算股票收益率的统计信息,并打印出来。
最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!