继续(3n+1)猜想



卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。

当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对n=3进行验证的时候,我们需要计算358421,则当我们对n=5842进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这4个数已经在验证3的时候遇到过了,我们称5842是被3“覆盖”的数。我们称一个数列中的某个数n为“关键数”,如果n不能被数列中的其他数字所覆盖。

现在给定一系列待验证的数字,我们只需要验证其中的几个关键数,就可以不必再重复验证余下的数字。你的任务就是找出这些关键数字,并按从大到小的顺序输出它们。

输入格式:

每个测试输入包含1个测试用例,第1行给出一个正整数K(<100),第2行给出K个互不相同的待验证的正整数n(1<n<=100)的值,数字间用空格隔开。

输出格式:

每个测试用例的输出占一行,按从大到小的顺序输出关键数字。数字间用1个空格隔开,但一行中最后一个数字后没有空格。

输入样例:

6
3 5 6 7 8 11

输出样例:

7 6

【提示】

遍历K个输入的正整数,所有正整数的初始状态都是没有被覆盖的。第一个是3首先检查3有没有被覆盖没有求3能够覆盖的正整数:3->5->8->4->2->1,标记下标为58421都已经被覆盖第二个5先检查5是否已经被覆盖,5已经被覆盖了,那么直接跳过注意直接跳过的原因是因为没必要再去检查5能够覆盖哪些正整数,既然5自己都已经被覆盖了,在前面的某一次检查中已经完成了5所能覆盖那些正整数的检查;第三个是66没有被覆盖检查6可以覆盖哪些数字: 6->3->5这里到5就可以停止检查了因为5的状态是已经被覆盖,必要继续下去。以此类推,就能知道输入的正整数(3567811)哪些被覆盖哪些没有。最后输出那些没有被覆盖的正整数(降序)。

【C++程序】

---------------

#include <iostream>  
#include <string>  
#include <vector>
#include <functional>  
#include <algorithm>  
using namespace std;
const int ARRAY_SIZE = 101;  
int main() {
	vector<int> vec;		// 存放输入的正整数	  
	int intArray[101] = {0};	// 标记被覆盖的数  
	int k;  
	cin >> k;  
	while(k--) {
		int value;  
		cin >> value;
		vec.push_back(value);
		if(intArray[value] == 1)	// 已经被覆盖就直接跳过 
			continue;  
		while(value > 1) {  
			if(value % 2 == 1)  
    			value = (3 * value + 1) / 2;  
			else
				value /= 2;  
  			if(value <= 100)
			  	if(intArray[value] != 1)	// 没有被覆盖 
					intArray[value] = 1;	// 设置覆盖标记 
				else
					break;					// 已经被覆盖就没必要继续下去  
  		}  
  	}  
  	sort(vec.begin(), vec.end(), greater<int>());	// 降序排序  
  	bool flag = false;							// 标记要输出的第一个关键数 
	vector<int>::const_iterator it;    
  	for(it = vec.begin(); it != vec.end(); ++it) {  
		if(intArray[*it] == 0) {  
    		if(flag)  
    			cout << " ";  
    		else  
    			flag = true;  
			cout << *it;						// 输出关键数  
		}  
  	}  
	cout << endl;  
	return 0;  
}  

### 关于3n+1问题的算法实现 #### 什么是3n+1问题? 3n+1问题也被称为Collatz猜想,是一个经典的数论问题。其核心思想是从任意正整数 \( n \) 开始,按照以下规则反复操作直到达到1为止: - 如果 \( n \) 是偶数,则将其除以2; - 如果 \( n \) 是奇数,则计算 \( 3n + 1 \)[^1]。 该过程会形成一个序列,称为Collatz序列。尽管尚未证明 Collatz 猜想对所有正整数都成立,但它已经被验证适用于非常大的数值范围。 以下是基于上述规则的一个Python实现: ```python def collatz_sequence(n): sequence = [] while n != 1: sequence.append(n) if n % 2 == 0: # If even n //= 2 else: # If odd n = 3 * n + 1 sequence.append(1) # Append the final value 1 return sequence # Example usage print(collatz_sequence(6)) # Output: [6, 3, 10, 5, 16, 8, 4, 2, 1] ``` 此函数接受一个正整数作为输入,并返回完整的Collatz序列。 #### 时间复杂度分析 对于给定的初始值 \( n \),生成整个Collatz序列的时间复杂度取决于序列长度。虽然具体的理论上限尚不清楚,但在实际应用中,每次迭代的操作成本为常量级(即 \( O(1) \)),因此整体时间复杂度大致与序列长度成线性关系【\( O(L) \), where \( L \) is the length of the sequence】[^2]。 #### 记忆化优化 为了减少重复计算,可以通过记忆化存储已经处理过的中间结果来加速程序执行。这种方法特别适合多次调用 `collatz_sequence` 函数的情况。 ```python from functools import lru_cache @lru_cache(maxsize=None) def memoized_collatz_length(n): if n == 1: return 1 elif n % 2 == 0: return 1 + memoized_collatz_length(n // 2) else: return 1 + memoized_collatz_length(3 * n + 1) # Example usage print(memoized_collatz_length(6)) # Output: 9 ``` 这里定义了一个辅助函数 `memoized_collatz_length` 来递归地求取序列长度,并利用装饰器 `@lru_cache` 实现自动缓存功能。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值