机器学习算法大全(MLS-C01)

本文概述了监督学习、协同过滤、KNN、K-means等基础算法,以及深度学习方法如LSTM、SVM、DeepAR、RNN、CNN等在推荐系统、时间序列预测、图像识别和自然语言处理中的应用。还介绍了强化学习、多智能体强化学习等高级算法及其应用场景。
摘要由CSDN通过智能技术生成
算法名字监督学习简介和用途
协同过滤推荐算法
Factorization Machines algorithm推荐算法,准确度更高,不会误打扰。
KNN利用已知样本,找最邻近的样本的分类算法
K-means聚类算法
RCF异常检测
Latent Dirichlet Allocation主题提取和文本分类
Long short term memory序列预测,语言模型
SVM分类
DeepAR回归RNN预测时序分布的模型
CNN卷积神经网络,常用于图像领域
ResNet-50N/ACNN的一种,图像识别
Generative Adversarial NetsN/A图像生成
Semantic Segmentation将图像中的每个像素分配到特定的类别,需要大量训练。
CNN-QR时序预测,且是唯一一个可以接收相关序列的模型算法比如天气
RNN循环神经网络,时序预测
XGBoost分类和回归算法
CatBoost分类算法
Regression forest回归算法,常用于填补缺失值
ARIMA时序预测,效果比DeepAR差,适用于小数据集
Logistic regression分类算法
PCA主成分分析,常用于降维
t-SNE高维可视化和降维算法
Reinforcement LearningN/A学习如何采取行动以最大化累积奖励。比如投资机器人。
Multi-agent ReinforcementN/A多智能强化学习,比如处理交通问题。
Single Shot MultiBox Detector(SDD)基于CNN的物体识别算法。
Sagemaker BlazingTextWord embedding,NLP文章分类
Sagemaker Neural Topic Model(NTM)主题提取
IP InsightIP分析
Prophet时序预测,适用于季节强相关的序列
Exponential Smoothing时序预测,适用于小数据集
Multidimensional Scaling降维,高维可视化
  • 10
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱知菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值