数据结构与算法-如何计算时间复杂度

今天我们来谈一下如何计算时间复杂度。

时间复杂度概念:(百度版)

同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。

计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况。

注意:本文承接上一篇《数据结构与算法-函数的渐近增长》,想详细了解渐近增长,请点击:数据结构与算法-函数的渐近增长


现在先上代码,请大家详细阅读注释,因为整个计算过程都已经在注释里面体现。


/**
 * 计算时间复杂度
 * 
 * @author ray
 * 
 */
public class Test {

	private void test1(int n) {
		System.out.println(n);// 操作=1
	}

	private void test2(int n) {
		int a = 0;
		for (int i = 0; i < n; i++) {// 操作=n
			a++;// 操作=1
		}
		// 总操作=n*1=n
		// 时间复杂度=O(1)
	}

	private void test3(int n) {
		int a = 0;
		for (int i = 0; i < n; i++) {// 操作=n
			for (int j = 0; j < n; j++) {// 操作=n
				a++;// 操作=1
			}
		}
		// 总操作=n*n*1=n^2
		// 时间复杂度=O(n^2)
	}

	private void test4(int n) {
		int a = 0;
		for (int i = 0; i < n; i++) {
			for (int j = i; j < n; j++) {// 操作=n,n-1,n-2,n-3......1=(n+1)n/2
				a++;// 操作=1
			}
		}
		// 总操作=(n+1)n/2=n^2/2+n/2
		// 由于时间复杂度是一个抽象的概念,当n的规模达到一定程度的时候,时间复杂度只取最高次幂,而且忽略其他次要项和系数
		// 时间复杂度=O(n^2)
	}

	private void test5(int n) {
		int a = 0;
		for (int i = 0; i < n; i++) {
			for (int j = i; j < n; j++) {// 操作=n,n-1,n-2,n-3......1=(n+1)n/2
				a++;// 操作=1
				System.out.println(a);// 操作=1
				// for循环内总操作=2
			}
		}
		// 总操作=(n+1)n/2*2=n^2+n
		// 由于时间复杂度是一个抽象的概念,当n的规模达到一定程度的时候,时间复杂度只取最高次幂,而且忽略其他次要项和系数
		// 时间复杂度=O(n^2)
	}

	private void test6(int n) {
		int a = 0;
		for (int i = 0; i < n; i++) {
			for (int j = i; j < n; j++) {// 操作=n,n-1,n-2,n-3......1=(n+1)n/2
				a++;// 操作=1
				System.out.println(a);// 操作=1
				System.out.println(i);// 操作=1
				// for循环内总操作=3
			}
		}
		// 总操作=(n+1)n/2*3=n^2*3/2+n*3/2
		// 由于时间复杂度是一个抽象的概念,当n的规模达到一定程度的时候,时间复杂度只取最高次幂,而且忽略其他次要项和系数
		// 时间复杂度=O(n^2)
	}

	private void test7(int n) {
		int a = 0;
		int b = 0;
		for (int i = 0; i < n; i++) {// 操作=n
			for (int j = 0; j < n; j++) {// 操作=n
				a++;// 操作=1
				System.out.println(a);// 操作=1
				// for循环内总操作=2
				for (int k = 0; k < n; k++) {// 操作=n
					b++;// 操作=1
					// for循环内总操作=1
				}
			}
		}
		// 总操作==n^3+2n^2
		// 由于时间复杂度是一个抽象的概念,当n的规模达到一定程度的时候,时间复杂度只取最高次幂,而且忽略其他次要项和系数
		// 时间复杂度=O(n^3)
	}

	public static void main(String[] args) {
		int n = 10;
		Test t = new Test();
		t.test1(n);
		t.test2(n);
		t.test3(n);
		t.test4(n);
		t.test5(n);
		t.test6(n);
		t.test7(n);
	}
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值