论文阅读 (一)对比学习系列 MoCo and 从InsDisc到 SimSiam DINO

花了一个下午,看了b站沐神账号的两个视频,对对比学习也算是有了初步的了解了。

论文链接:
https://github.com/mli/paper-reading/

感觉kaiming大神还是强,从moco 到 simsiam,化繁为简,一切以简单有效为基准,从最初接触resnet到MAE,到今天看的对比学习的几个工作,风格好鲜明呀,最容易follow,less is more。

BYOL的作者也是刚,为了回复一篇BN在BYOL作用的博客,专门写了一篇论文回复质疑。

总结下来,对比学习的研究热度这两年兴起,随着ViT在CV界的火爆,对比学习热度逐渐下降,大都转向了Transformer了,尤其MAE的出现,transformer的研究热度更高,对比学习的研究进入了发展潜伏期。
transformer的多模态学习,看来也要接着学习起来了,期待对比学习在多模态学习领域的进一步融合发展呀!!!

一个下午简略过了一遍对比学习的发展史,元旦的最后一天假期,还是有点意义的。

下周开始接实验室项目收尾,然后开始攻克小论文专利。

对比学习讲解视频:
MoCo
在这里插入图片描述

video:
https://www.bilibili.com/video/BV1C3411s7t9?spm_id_from=333.999.0.0
专栏
https://www.bilibili.com/read/cv14463867?from=note

对比学习串烧
video:
https://www.bilibili.com/video/BV19S4y1M7hm?spm_id_from=333.999.0.0
总结笔记:
https://zhuanlan.zhihu.com/p/452087382

在这里插入图片描述在这里插入图片描述

在这里插入图片描述
对比学习的应用和进一步学习:
https://blog.csdn.net/qq_39388410/article/details/113995410?spm=1001.2014.3001.5501

有时间再接着看,先屯着。

无监督对比学习种用于训练深度神经网络的自监督学习方法,它在没有标签的大规模未标记数据上进行训练。该方法通过使模型学习将相似样本聚集在起,将不相似样本分开来,从而学习到有用的特征表示。 以下是几种常见的无监督对比学习方法: 1. MoCo(Momentum Contrast):MoCo种基于对比学习的方法,它使用了动量更新策略来增强对比学习的性能。它通过构建一个动态的字典来扩展正样本的数量,并使用动量更新策略来提高特征的致性。 2. SimCLR(Simple Contrastive Learning):SimCLR是种简单而有效的对比学习方法,它通过最大化正样本间的相似性并最小化负样本间的相似性来进行训练。SimCLR使用了数据增强大批量训练等技术来提高性能。 3. SwAV(Swapping Assignments between Views):SwAV是种基于视图交换的对比学习方法,它通过交换不同视图下的样本分配来增强对比学习过程。SwAV还使用了聚类损失来进步优化特征表示。 4. BYOL(Bootstrap Your Own Latent):BYOL是种基于自举的对比学习方法,它通过预测一个网络的自我编码器输出来进行训练。BYOL使用了移动平均权重在线网络更新等技术来提高性能。 5. SimSiam(Simplified Siamese):SimSiam种简化的孪生网络对比学习方法,它通过最大化网络预测的致性来进行训练。相比于传统的对比学习方法,SimSiam省略了负样本的构造过程,简化了训练过程。 这些无监督对比学习方法在图像自然语言处理等领域都取得了很好的效果,并且被广泛应用于预训练模型的训练中。每种方法都有其独特的特点优势,可以根据具体任务数据集选择适合的方法进行使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ray Song

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值